Report on Accelerated Techniques for Concrete Paving

Reported by ACI Committee 325

Kurt D. Smith,* Chair

Norbert J. Delatte*
W. Charles Greer

Jerry A. Holland
Gary L. Mitchell

Jon I. Mullarky*
Kamran M. Nemati

Nigel K. Parkes
David W. Pittman

Steven A. Ragan
David Richardson*

Terry W. Sherman
Alex Hak-Chul Shin

Anthony M. Sorcic†
Shiraz D. Tayabji

Peter C. Taylor
Samuel S. Tyson

Thomas J. Van Dam
Don J. Wade

W. James Wilde
Gergis W. William

James M. Willson
Dan G. Zollinger

David J. Aker

Richard O. Albright

Jamshid M. Armaghani

Bob J. Banka

Neeraj J. Buch

Tim Cost*

Juan Pablo Covarrubias

Mohamed Nasser Darwish

Michael I. Darter
John L. Rice

Raymond S. Rollings

*Task Force members who authored this Report.
†Task Group Chair.

ACI Committee Reports, Guides, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

CHAPTER 1—INTRODUCTION AND SCOPE, p. 2
1.1—Introduction, p. 2
1.2—Scope, p. 3

CHAPTER 2—NOTATION AND DEFINITIONS, p. 3
2.1—Notation, p. 3
2.2—Definitions, p. 3

CHAPTER 3—PROJECT APPLICATIONS, p. 3
3.1—Highways and tollways, p. 3
3.2—Streets, p. 3
3.3—Intersections, p. 3
3.4—Airports, p. 3

CHAPTER 4—PLANNING, p. 3
4.1—Planning considerations, p. 3
4.2—Partnering, p. 4
4.3—Specifications, p. 4
4.4—Innovative equipment, p. 4

CHAPTER 5—CONCRETE MATERIALS, p. 5
5.1—Concrete mixture proportioning, p. 5
5.2—Cement, p. 7
5.3—Supplementary cementitious materials, p. 8
5.4—Air-entraining admixtures, p. 8
5.5—Water-reducing admixtures, p. 9
5.6—Accelerating admixtures, p. 9
5.7—Aggregate, p. 9
5.8—Water, p. 10
1.1—Introduction

Airport authorities and road agencies face major challenges in repairing and maintaining their pavement infrastructure under ever-increasing traffic volumes while maintaining traffic on these structures. The duration that is involved with traditional concrete pavement construction can have significant consequences to users of the facilities and, as a result, transportation agencies seek alternative methods for accelerating this process when closure times become an issue. This can be especially demanding in urban areas where congestion is severe. Accelerated construction techniques for portland-cement concrete (PCC) pavement can address these problems by providing reduced construction closure for new construction, reconstruction, or resurfacing projects.

Accelerated paving encompasses various activities, including technological methods to accelerate concrete construction (using rapid-setting materials or innovative construction approaches) and contractual methods to minimize the construction time (such as time incentives and disincentives).

Traditional agencies have been using these time-of-completion incentives for many years, and contractors will often meet these requirements by lengthening the work day or increasing the size of construction crews. Using accelerated paving techniques, a contractor often can complete a project without increasing crew size or changing normal labor schedules.

If any accelerated paving project is to be successful, there should be buy-in from all parties involved on the project. There needs to be a partnership and effective communication between the transportation agency representatives, contractors, suppliers, and engineer consultants.

1.1.1 Changes to construction specifications and processes—To build an accelerated paving project, both the contractor and the agency will make some changes to traditional construction specifications and processes. Often, these involve high-early-strength concrete, but they

<table>
<thead>
<tr>
<th>Project component</th>
<th>Possible changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>a) Implement partnering-based project management.</td>
</tr>
<tr>
<td></td>
<td>b) Implement lane rental charges, which is an innovative contracting practice that encourages contractors to lessen the construction impact on road users.</td>
</tr>
<tr>
<td></td>
<td>c) Allow night construction.</td>
</tr>
<tr>
<td></td>
<td>d) Allow contractor to use innovative equipment or procedures to expedite construction (for example, minimum-clearance machines, dowel inserters, and ultra-light saws).</td>
</tr>
<tr>
<td></td>
<td>e) Specify more than one concrete mixture for varied strength development.</td>
</tr>
<tr>
<td></td>
<td>f) Provide options to contractors, not step-by-step procedures to allow the contractor to provide options based on their experiences in paving, instead of prescribing how to perform the work.</td>
</tr>
<tr>
<td></td>
<td>g) Use time-of-completion incentives and disincentives.</td>
</tr>
<tr>
<td>Concrete materials</td>
<td>a) Try different cement types (particularly Type III).</td>
</tr>
<tr>
<td></td>
<td>b) Use accelerating and water-reducing admixtures.</td>
</tr>
<tr>
<td></td>
<td>c) Use a well-graded aggregate that has a uniform distribution of aggregates on each sieve.</td>
</tr>
<tr>
<td></td>
<td>d) Keep water-cementitious materials ratio (w/cm) below 0.45 for durability and strength.</td>
</tr>
<tr>
<td></td>
<td>e) Use a prewetted lightweight aggregate sand to cause a higher-early-age and long-term strength.</td>
</tr>
<tr>
<td>Jointing and sealing</td>
<td>a) Allow early-age sawing, which is done during the initial concrete, set stage after compressive strengths reach about 150 psi (1.0 MPa).</td>
</tr>
<tr>
<td></td>
<td>b) Use dry-saving blades.</td>
</tr>
<tr>
<td></td>
<td>c) Use step-cut blades for single-pass joint sawing.</td>
</tr>
<tr>
<td></td>
<td>d) Use a sealant that is unaffected by moisture or reservoir cleanliness.</td>
</tr>
<tr>
<td>Concrete curing and temperature</td>
<td>a) Suggest blanket curing to aid strength gain when beneficial.</td>
</tr>
<tr>
<td></td>
<td>b) Monitor concrete temperature and understand relationship of ambient, subgrade, and mixture temperature on strength gain.</td>
</tr>
<tr>
<td></td>
<td>c) Improve characteristics caused by less than optimum temperature through internal curing by use of prewetted lightweight aggregate sand to improve early age and longer results.</td>
</tr>
<tr>
<td>Strength testing</td>
<td>a) Use nondestructive methods to replace or supplement cylinders and beams for strength testing.</td>
</tr>
<tr>
<td></td>
<td>b) Use concrete maturity or pulse velocity testing to predict strength.</td>
</tr>
<tr>
<td>Traffic opening criterion</td>
<td>a) Revise from a time criterion to a strength criterion; channel early loads away from slab edges.</td>
</tr>
<tr>
<td></td>
<td>b) Restrict truck traffic.</td>
</tr>
</tbody>
</table>