An ACI Standard
An ANSI Standard

Building Code Requirements for Structural Concrete (ACI 318-19)

Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19)

Reported by ACI Committee 318
Building Code Requirements for Structural Concrete (ACI 318-19)

An ACI Standard

Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19)

Reported by ACI Committee 318

Jack P. Moehle, Chair

Gregory M. Zeisler, Secretary (Non-voting)

VOTING MEMBERS

Neal S. Anderson
Roger J. Becker
John F. Bonacci
Dean A. Browning
JoAnn P. Browning
James R. Cagley
Ned M. Cleland
Charles W. Dolan
Catherine E. French
Robert J. Frosch
Luis E. Garcia
Satyendra Ghosh
James R. Harris
Terence C. Holland
James O. Jirs
Dominic J. Kelly
Gary J. Klein
Ronald Klemcnic
William M. Klorman
Michael E. Kregen

Colin L. Lobo
Raymond Lui
Paul F. Mlakar
Michael C. Mota
Lawrence C. Novak
Carlos E. Osipina
Gustavo J. Parra-Montesinos
Randall W. Poston
Carin L. Roberts-Wollmann
Mario E. Rodriguez

David H. Sanders
Thomas C. Schaeffer
Stephen J. Segurant
Andrew W. Taylor
John W. Wallace
James K. Wight
Sharon L. Wood
Loring A. Wyllie Jr.
Fernando Yanez

SUBCOMMITTEE MEMBERS

Theresa M. Ahlborn
F. Michael Bartlett
Asit N. Baxi
Abdeljalil Belarbi
Allan P. Bommer
Sergio F. Brena
Jared E. Brewe
Nicholas J. Carino
Min Yuan Cheng
Ronald A. Cook
David Darwin
Curtis L. Decker
Jeffrey J. Dragovich
Jason L. Draper
Lisa R. Feldman
Damon R. Fick
David C. Fields
Anthony E. Fiorato
Rudolph P. Frizzi
Wassim M. Ghannoum
Harry A. Gleich
Zen Hoda
R. Brett Holland
R. Doug Hooton
Kenneth C. Hover
I-chi Huang
Matias Hube
Mary Beth D. Hueste
Jose M. Izquierdo-Encarnacion
Maria G. Juenger
Keith E. Kesner
Insung Kim
Donald P. Kline
Jason C. Krohn

Daniel A. Kuchma
James M. LaFave
Andres Lepage
Remy D. Lequesne
Ricardo R. Lopez
Laura N. Lowes
Frank Stephen Malits
Leonardo M. Massone
Steven L. McCabe
Ian S. McFarlane
Robert R. McGlohn
Donald F. Meinhert
Fred Meyer
Daniel T. Mullins
Clay J. Naito
William H. Oliver
Viral B. Patel

Conrad Paulson
Jose A. Pincheira
Mehran Pourzanjani
Santiago Pujol
Jose I. Restrepo
Nicolas Rodrigues
Andrea J. Schokker
Bahram M. Shahrooz
John F. Silva
Lesley H. Sned
John F. Stanton
Bruce A. Suprenant
Miroslav Veyoda
W. Jason Weiss
Christopher D. White

LIAISON MEMBERS

Raul D. Bertero*
Mario Alberto Chiorino
Juan Francisco Correal Daza*
Kenneth J. Elwood*
Luis B. Fargier-Gabaldon
Werner A. F. Fuchs*
Patricio Garcia*
Raymond Ian Gilbert
Wael Mohammed Hassan
Angel E. Herrera

Augusto H. Holmberg*
Hector Monzon-Despang
Ernesto Ng
Guney Ozcebe
Enrique Pasquel*

Guillermo Santana*
Ahmed B. Shuraim
Roberto Stark*
Julio Timerman
Roman Wan-Wendner

CONSULTING MEMBERS

David P. Gustafson
Neil M. Hawkins
Robert F. Mast
Basile G. Rabbat

David M. Rogowsky

* Liaison members serving on various subcommittees.

ACI 318-19 supersedes ACI 318-14, was adopted May 3, 2019, and published June 2019.

Copyright © 2019, American Concrete Institute.
PREFACE TO ACI 318-19

The “Building Code Requirements for Structural Concrete” (“Code”) provides minimum requirements for the materials, design, and detailing of structural concrete buildings and, where applicable, nonbuilding structures. This Code was developed by an ANSI-approved consensus process and addresses structural systems, members, and connections, including cast-in-place, precast, shotcrete, plain, nonprestressed, prestressed, and composite construction. Among the subjects covered are: design and construction for strength, serviceability, and durability; load combinations, load factors, and strength reduction factors; structural analysis methods; deflection limits; mechanical and adhesive anchoring to concrete; development and splicing of reinforcement; construction document information; field inspection and testing; and methods to evaluate the strength of existing structures.

The Code was substantially reorganized and reformatted in 2014, and this Code continues and expands that same organizational philosophy. The principal objectives of the reorganization were to present all design and detailing requirements for structural systems or for individual members in chapters devoted to those individual subjects, and to arrange the chapters in a manner that generally follows the process and chronology of design and construction. Information and procedures that are common to the design of multiple members are located in utility chapters. Additional enhancements implemented in this Code to provide greater clarity and ease of use include the first use of color illustrations and the use of color to help the user navigate the Code and quickly find the information they need. Special thanks to Bentley Systems, Incorporated, for use of their ProConcrete software to produce many of the figures found in the Commentary.

Uses of the Code include adoption by reference in a general building code, and earlier editions have been widely used in this manner. The Code is written in a format that allows such reference without change to its language. Therefore, background details or suggestions for carrying out the requirements or intent of the Code provisions cannot be included within the Code itself. The Commentary is provided for this purpose.

Some considerations of the committee in developing the Code are discussed in the Commentary, with emphasis given to the explanation of new or revised provisions. Much of the research data referenced in preparing the Code is cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the Code are also cited.

Technical changes from ACI 318-14 to ACI 318-19 are outlined in the August 2019 issue of Concrete International and are marked in the text of this Code with change bars in the margins.

KEYWORDS

admixtures; aggregates; anchorage (structural); beam-column frame; beams (supports); caissons; cements; cold weather; columns (supports); combined stress; composite construction (concrete to concrete); compressive strength; concrete; construction documents; construction joints; continuity (structural); contraction joints; cover; curing; deep beams; deep foundations; deflections; drilled piers; earthquake-resistant structures; flexural strength; floors; footings; formwork (construction); hot weather; inspection; isolation joints; joints (junctions); joists; lightweight concretes; load tests (structural); loads (forces); mixture proportioning; modulus of elasticity; moments; piles; placing; plain concrete; precast concrete; prestressed concrete; prestressing steels; quality control; reinforced concrete; reinforcing steels; roofs; serviceability; shear strength; shotcrete; spans; splicing; strength analysis; stresses; structural analysis; structural design; structural integrity; structural walls; T-beams; torsion; walls; water; welded wire reinforcement.
ACI 318-19, “Building Code Requirements for Structural Concrete,” hereinafter called the Code or the 2019 Code, and ACI 318R-19, “Commentary,” are presented in a side-by-side column format. These are two separate but coordinated documents, with Code text placed in the left column and the corresponding Commentary text aligned in the right column. Commentary section numbers are preceded by an “R” to further distinguish them from Code section numbers. The two documents are bound together solely for the user’s convenience. Each document carries a separate enforceable and distinct copyright.

As the name implies, “Building Code Requirements for Structural Concrete” is meant to be used as part of a legally adopted building code and as such must differ in form and substance from documents that provide detailed specifications, recommended practice, complete design procedures, or design aids.

The Code is intended to cover all buildings of the usual types, both large and small. Requirements more stringent than the Code provisions may be desirable for unusual construction. The Code and Commentary cannot replace sound engineering knowledge, experience, and judgment.

A building code states only the minimum requirements necessary to provide for public health and safety. The Code is based on this principle. For any structure, the owner or the licensed design professional may require the quality of materials and construction to be higher than the minimum requirements necessary to protect the public as stated in the Code. However, lower standards are not permitted.

The Code has no legal status unless it is adopted by the government bodies having the police power to regulate building design and construction. Where the Code has not been adopted, it may serve as a reference to good practice even though it has no legal status.

The Code and Commentary are not intended for use in settling disputes between the owner, engineer, architect, contractor, or their agents, subcontractors, material suppliers, or testing agencies. Therefore, the Code cannot define the contract responsibility of each of the parties in usual construction. General references requiring compliance with the Code in the project specifications should be avoided because the contractor is rarely in a position to accept responsibility for design details or construction requirements that depend on a detailed knowledge of the design. Design-build construction contractors, however, typically combine the design and construction responsibility. Generally, the contract documents should contain all of the necessary requirements to ensure compliance with the Code. In part, this can be accomplished by reference to specific Code sections in the project specifications. Other ACI publications, such as “Specifications for Structural Concrete (ACI 301)” are written specifically for use as contract documents for construction.

The Commentary discusses some of the considerations of Committee 318 in developing the provisions contained in the Code. Emphasis is given to the explanation of new or revised provisions that may be unfamiliar to Code users. In addition, comments are included for some items contained in previous editions of the Code to make the present Commentary independent of the previous editions. Comments on specific provisions are made under the corresponding chapter and section numbers of the Code.

The Commentary is not intended to provide a complete historical background concerning the development of the Code, nor is it intended to provide a detailed résumé of the studies and research data reviewed by the committee in formulating the provisions of the Code. However, references to some of the research data are provided for those who wish to study the background material in depth.

The Commentary directs attention to other documents that provide suggestions for carrying out the requirements and intent of the Code. However, those documents and the Commentary are not a part of the Code.

The Commentary is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations, and who will accept responsibility for the application of the information it contains. ACI disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom. Reference to the Commentary shall not be made in construction documents. If items found in the Commentary are desired by the licensed design professional to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the licensed design professional.

It is recommended to have the materials, processes, quality control measures, and inspections described in this document tested, monitored, or performed by individuals holding the appropriate ACI Certification or equivalent, when available. The personnel certification programs of the American Concrete Institute and the Post-Tensioning Institute; the plant certification programs of the Precast/Prestressed Concrete Institute, the Post-Tensioning Institute, and the National Ready Mixed Concrete Association; and the Concrete Reinforcing Steel Institute’s Voluntary Certification Program for Fusion-Bonded Epoxy Coating Applicator Plants are available for this purpose. In addition, “Standard Specification for Agencies Engaged in Construction Inspection, Testing, or Special Inspection” (ASTM E329-18) specifies performance requirements for inspection and testing agencies.

Design reference materials illustrating applications of the Code requirements are listed and described in the back of this document.
TABLE OF CONTENTS

PART 1: GENERAL

CHAPTER 1
GENERAL
1.1—Scope of ACI 318, p. 9
1.2—General, p. 9
1.3—Purpose, p. 9
1.4—Applicability, p. 10
1.5—Interpretation, p. 12
1.6—Building official, p. 13
1.7—Licensed design professional, p. 13
1.8—Construction documents and design records, p. 13
1.9—Testing and inspection, p. 14
1.10—Approval of special systems of design, construction, or alternative construction materials, p. 14

CHAPTER 2
NOTATION AND TERMINOLOGY
2.1—Scope, p. 15
2.2—Notation, p. 15
2.3—Terminology, p. 31

CHAPTER 3
REFERENCED STANDARDS
3.1—Scope, p. 47
3.2—Referenced standards, p. 47

CHAPTER 4
STRUCTURAL SYSTEM REQUIREMENTS
4.1—Scope, p. 51
4.2—Materials, p. 51
4.3—Design loads, p. 51
4.4—Structural system and load paths, p. 52
4.5—Structural analysis, p. 54
4.6—Strength, p. 55
4.7—Serviceability, p. 56
4.8—Durability, p. 56
4.9—Sustainability, p. 56
4.10—Structural integrity, p. 56
4.11—Fire resistance, p. 57
4.12—Requirements for specific types of construction, p. 57
4.13—Construction and inspection, p. 59
4.14—Strength evaluation of existing structures, p. 59

PART 2: LOADS & ANALYSIS

CHAPTER 5
LOADS
5.1—Scope, p. 61
5.2—General, p. 61
5.3—Load factors and combinations, p. 62

CHAPTER 6
STRUCTURAL ANALYSIS
6.1—Scope, p. 67
6.2—General, p. 67
6.3—Modeling assumptions, p. 72
6.4—Arrangement of live load, p. 73
6.5—Simplified method of analysis for nonprestressed continuous beams and one-way slabs, p. 74
6.6—Linear elastic first-order analysis, p. 75
6.7—Linear elastic second-order analysis, p. 84
6.8—Inelastic analysis, p. 85
6.9—Acceptability of finite element analysis, p. 86

PART 3: MEMBERS

CHAPTER 7
ONE-WAY SLABS
7.1—Scope, p. 89
7.2—General, p. 89
7.3—Design limits, p. 89
7.4—Required strength, p. 91
7.5—Design strength, p. 91
7.6—Reinforcement limits, p. 92
7.7—Reinforcement detailing, p. 94

CHAPTER 8
TWO-WAY SLABS
8.1—Scope, p. 99
8.2—General, p. 99
8.3—Design limits, p. 100
8.4—Required strength, p. 103
8.5—Design strength, p. 109
8.6—Reinforcement limits, p. 110
8.7—Reinforcement detailing, p. 113
8.8—Nonprestressed two-way joist systems, p. 125
CHAPTER 9
BEAMS
9.1—Scope, p. 127
9.2—General, p. 127
9.3—Design limits, p. 128
9.4—Required strength, p. 130
9.5—Design strength, p. 133
9.6—Reinforcement limits, p. 135
9.7—Reinforcement detailing, p. 139
9.8—Nonprestressed one-way joist systems, p. 150
9.9—Deep beams, p. 152

CHAPTER 10
COLUMNS
10.1—Scope, p. 155
10.2—General, p. 155
10.3—Design limits, p. 155
10.4—Required strength, p. 156
10.5—Design strength, p. 157
10.6—Reinforcement limits, p. 157
10.7—Reinforcement detailing, p. 158

CHAPTER 11
WALLS
11.1—Scope, p. 165
11.2—General, p. 165
11.3—Design limits, p. 166
11.4—Required strength, p. 166
11.5—Design strength, p. 167
11.6—Reinforcement limits, p. 170
11.7—Reinforcement detailing, p. 171
11.8—Alternative method for out-of-plane slender wall analysis, p. 172

CHAPTER 12
DIAPHRAGMS
12.1—Scope, p. 175
12.2—General, p. 176
12.3—Design limits, p. 177
12.4—Required strength, p. 178
12.5—Design strength, p. 181
12.6—Reinforcement limits, p. 188
12.7—Reinforcement detailing, p. 188

CHAPTER 13
FOUNDATIONS
13.1—Scope, p. 191
13.2—General, p. 193
13.3—Shallow foundations, p. 197
13.4—Deep foundations, p. 199

CHAPTER 14
PLAIN CONCRETE
14.1—Scope, p. 203
14.2—General, p. 204
14.3—Design limits, p. 204
14.4—Required strength, p. 206
14.5—Design strength, p. 207
14.6—Reinforcement detailing, p. 210

PART 4: JOINTS/CONNECTIONS/ANCHORS

CHAPTER 15
BEAM-COLUMN AND SLAB-COLUMN JOINTS
15.1—Scope, p. 211
15.2—General, p. 211
15.3—Detailing of joints, p. 212
15.4—Strength requirements for beam-column joints, p. 213
15.5—Transfer of column axial force through the floor system, p. 214

CHAPTER 16
CONNECTIONS BETWEEN MEMBERS
16.1—Scope, p. 217
16.2—Connections of precast members, p. 217
16.3—Connections to foundations, p. 222
16.4—Horizontal shear transfer in composite concrete flexural members, p. 225
16.5—Brackets and corbels, p. 227

CHAPTER 17
ANCHORING TO CONCRETE
17.1—Scope, p. 233
17.2—General, p. 234
17.3—Design Limits, p. 235
17.4—Required strength, p. 236
17.5—Design strength, p. 236
17.6—Tensile strength, p. 246
17.7—Shear strength, p. 261
17.8—Tension and shear interaction, p. 270
17.9—Edge distances, spacings, and thicknesses to preclude splitting failure, p. 270
17.10—Earthquake-resistant anchor design requirements, p. 272
17.11—Attachments with shear lugs, p. 277
1.1—Scope of ACI 318

1.1.1 This chapter addresses (a) through (h):

(a) General requirements of this Code
(b) Purpose of this Code
(c) Applicability of this Code
(d) Interpretation of this Code
(e) Definition and role of the building official and the licensed design professional
(f) Construction documents
(g) Testing and inspection
(h) Approval of special systems of design, construction, or alternative construction materials

1.2—General

1.2.1 ACI 318, “Building Code Requirements for Structural Concrete,” is hereafter referred to as “this Code.”

1.2.2 In this Code, the general building code refers to the building code adopted in a jurisdiction. When adopted, this Code forms part of the general building code.

1.2.3 The official version of this Code is the English language version, using inch-pound units, published by the American Concrete Institute.

1.2.4 In case of conflict between the official version of this Code and other versions of this Code, the official version governs.

1.2.5 This Code provides minimum requirements for the materials, design, construction, and strength evaluation of structural concrete members and systems in any structure designed and constructed under the requirements of the general building code.

1.2.6 Modifications to this Code that are adopted by a particular jurisdiction are part of the laws of that jurisdiction, but are not a part of this Code.

1.2.7 If no general building code is adopted, this Code provides minimum requirements for the materials, design, construction, and strength evaluation of members and systems in any structure within the scope of this Code.

1.3—Purpose

1.3.1 The purpose of this Code is to provide for public health and safety by establishing minimum requirements for
Fight, stability, serviceability, durability, and integrity of concrete structures.

1.3.2 This Code does not address all design considerations.

1.3.3 Construction means and methods are not addressed in this Code.

1.4—Applicability

1.4.1 This Code shall apply to concrete structures designed and constructed under the requirements of the general building code.

1.4.2 Provisions of this Code shall be permitted to be used for the assessment, repair, and rehabilitation of existing structures.

1.4.3 Applicable provisions of this Code shall be permitted to be used for structures not governed by the general building code.

1.4.4 The design of thin shells and folded plate concrete structures shall be in accordance with ACI 318.2, “Building Code Requirements for Concrete Thin Shells.”

1.4.5 This Code shall apply to the design of slabs cast on stay-in-place, noncomposite steel decks.

1.4.6 The design of thin shells and folded plate concrete structures shall be in accordance with ACI 318.2, “Building Code Requirements for Concrete Thin Shells.”

1.4.7 This Code shall apply to the design of slabs cast on stay-in-place, noncomposite steel decks.

R1.3.2 The minimum requirements in this Code do not replace sound professional judgment or the licensed design professional’s knowledge of the specific factors surrounding a project, its design, the project site, and other specific or unusual circumstances to the project.

R1.4—Applicability

R1.4.2 Specific provisions for assessment, repair, and rehabilitation of existing concrete structures are provided in ACI CODE-562-21. Existing structures in ACI 562 are defined as structures that are complete and permitted for use.

R1.4.3 Structures such as arches, bins and silos, blast-resistant structures, chimneys, underground utility structures, gravity walls, and shielding walls involve design and construction requirements that are not specifically addressed by this Code. Many Code provisions, however, such as concrete quality and design principles, are applicable for these structures. Recommendations for design and construction of some of these structures are given in the following:

- “Code Requirements for Reinforced Concrete Chimneys and Commentary” (ACI 307-08)
- “Standard Practice for Design and Construction of Concrete Silos and Stacking Tubes for Storing Granular Materials” (ACI 313-97)
- “Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary” (ACI 349)
- “ASME BPVC Section III – Rules for Construction of Nuclear Facility Components – Division 2 – Code for Concrete Containments”

R1.4.5 In its most basic application, the noncomposite steel deck serves as a form, and the concrete slab is designed to resist all loads, while in other applications the concrete slab may be designed to resist only the superimposed loads. The design of a steel deck in a load-resisting application is given in “Standard for Steel Deck” (SD). The SD standard
1.4.6 For one- and two-family dwellings, multiple single-family dwellings, townhouses, and accessory structures to these types of dwellings, the design and construction of cast-in-place footings, foundation walls, and slabs-on-ground in accordance with ACI 332 shall be permitted.

1.4.7 This Code does not apply to the design and installation of concrete piles, drilled piers, and caissons embedded in ground, except as provided in (a) through (c):

(a) For portions of deep foundation members in air or water, or in soil incapable of providing adequate lateral restraint to prevent buckling throughout their length
(b) For precast concrete piles supporting structures assigned to Seismic Design Categories A and B (13.4)
(c) For deep foundation elements supporting structures assigned to Seismic Design Categories C, D, E, and F (Ch. 13, 18.13)

1.4.8 This Code does not apply to design and construction of slabs-on-ground, unless the slab transmits vertical loads or lateral forces from other portions of the structure to the soil.

1.4.9 This Code does not apply to the design and construction of tanks and reservoirs.

1.4.10 This Code does not apply to composite design slabs cast on stay-in-place composite steel deck. Concrete used in the construction of such slabs shall be governed by this Code, where applicable. Portions of such slabs designed as reinforced concrete are governed by this Code.

CODE

COMMENTARY

refers to this Code for the design and construction of the structural concrete slab.

R1.4.6 ACI 332 addresses only the design and construction of cast-in-place footings, foundation walls supported on continuous footings, and slabs-on-ground for limited residential construction applications.

The 2021 IBC requires design and construction of residential post-tensioned slabs on expansive soils to be in accordance with PTI DC10.5, which provides requirements for slab-on-ground foundations, including soil investigation, design, and analysis. Guidance for the design and construction of post-tensioned slabs-on-ground that are not on expansive soils can be found in ACI 360R. Refer to R1.4.8.

R1.4.7 The design and installation of concrete piles fully embedded in the ground is regulated by the general building code. The 2019 edition of the Code contains some provisions that previously were only available in the general building code. In addition to the provisions in this Code, recommendations for concrete piles are given in ACI 543R, recommendations for drilled piers are given in ACI 336.3R, and recommendations for precast prestressed concrete piles are given in “Recommended Practice for Design, Manufacture, and Installation of Prestressed Concrete Piling” (PCI 1993). Requirements for the design and construction of micropiles are not specifically addressed by this Code.

R1.4.8 Detailed recommendations for design and construction of slabs-on-ground and floors that do not transmit vertical loads or lateral forces from other portions of the structure to the soil are given in ACI 360R. This guide presents information on the design of slabs-on-ground, primarily industrial floors and the slabs adjacent to them. The guide addresses the planning, design, and detailing of the slabs. Background information on the design theories is followed by discussion of the soil support system, loadings, and types of slabs. Design methods are given for structural plain concrete, reinforced concrete, shrinkage-compensating concrete, and post-tensioned concrete slabs.

R1.4.9 Requirements and recommendations for the design and construction of tanks and reservoirs are given in ACI 350, ACI 334.1R, and ACI 372R.

R1.4.10 In this type of construction, the steel deck serves as the positive moment reinforcement. The design and construction of concrete-steel deck slabs is described in “Standard for Steel Deck” (SD). The standard refers to the appropriate portions of this Code for the design and construction of the concrete portion of the composite assembly. SD also provides guidance for design of composite-concrete-steel deck slabs. The design of negative moment reinforcement to create continuity at supports is a common example