Guide for Consolidation of Concrete
Reported by ACI Committee 309

Richard E. Miller
Chair

Neil A. Cumming
Timothy P. Dolen
Chiara F. Ferraris
Steven H. Gebler
Glenn A. Heimbruch

Kenneth C. Hover
Garry R. Mass
Bryant Mather
Larry D. Olson

H. Celik Ozyildirim
Steven A. Ragan
Mike Thompson
Bradley K. Violetta

 CONTENTS

Chapter 1—General, p. 309R-2

Chapter 2—Effect of mixture proportions on consolidation, p. 309R-3
 2.1—Mixture proportions
 2.2—Workability and consistency
 2.3—Workability requirements

Chapter 3—Methods of consolidation, p. 309R-4
 3.1—Manual methods
 3.2—Mechanical methods
 3.3—Methods used in combination

Chapter 4—Consolidation of concrete by vibration, p. 309R-5
 4.1—Vibratory motion
 4.2—Process of consolidation

Chapter 5—Equipment for vibration, p. 309R-6
 5.1—Internal vibrators
 5.2—Form vibrators
 5.3—Vibrating tables
 5.4—Surface vibrators
 5.5—Vibrator maintenance

ACI Committee Reports, Guides, Standard Practices, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Refer to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

ACI 309R-05 became effective August 5, 2005 and supersedes ACI 309R-96.
Copyright © 2005, American Concrete Institute.
All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
Chapter 6—Forms, p. 309R-13
6.1—General
6.2—Sloping surfaces
6.3—Surface blemishes
6.4—Form tightness
6.5—Forms for external vibration

Chapter 7—Recommended vibration practices for general construction, p. 309R-15
7.1—General
7.2—Procedure for internal vibration
7.3—Adequacy of internal vibration
7.4—Vibration of reinforcement
7.5—Revibration
7.6—Form vibration
7.7—Consequences of improper vibration

Chapter 8—Structural concrete, p. 309R-19
8.1—Design and detailing prerequisites
8.2—Mixture requirements
8.3—Internal vibration
8.4—Form vibration
8.5—Tunnel linings

Chapter 9—Mass concrete, p. 309R-20
9.1—Mixture requirements
9.2—Vibration equipment
9.3—Forms
9.4—Vibration practices
9.5—Roller-compacted concrete

Chapter 10—Normal-density concrete floor slabs, p. 309R-22
10.1—Mixture requirements
10.2—Equipment
10.3—Structural slabs
10.4—Slabs on ground
10.5—Heavy-duty industrial floors
10.6—Vacuum dewatering

Chapter 11—Pavements, p. 309R-24
11.1—General
11.2—Mixture requirements
11.3—Equipment
11.4—Vibration procedures
11.5—Special precautions

Chapter 12—Precast products, p. 309R-27
12.1—General
12.2—Mixture requirements
12.3—Forming material
12.4—Choice of consolidation method
12.5—Placing methods

Chapter 13—Structural low-density concrete, p. 309R-28
13.1—General
13.2—Mixture requirements
13.3—Behavior of structural low-density concrete during vibration
13.4—Consolidation equipment and procedures
13.5—Floors

Chapter 14—High-density concrete, p. 309R-29
14.1—General
14.2—Mixture requirements
14.3—Placing techniques

Chapter 15—Self-consolidating concrete, p. 309R-29
15.1—General

Chapter 16—Quality control and quality assurance, p. 309R-29
16.1—General
16.2—Adequacy equipment and procedures
16.3—Checking equipment performance

Chapter 17—Consolidation of test specimens, p. 309R-31
17.1—Strength
17.2—Density
17.3—Air content
17.4—Consolidating very stiff concrete in laboratory specimens

Chapter 18—Consolidation in congested areas, p. 309R-32
18.1—Common placing problems
18.2—Consolidation techniques

Chapter 19—References, p. 309R-33
19.1—Referenced standards and reports
19.2—Cited references

Appendix—Fundamentals of vibration, p. 309R-35
A.1—Principles of simple harmonic motion
A.2—Action of a rotary vibrator
A.3—Vibratory motion in the concrete

CHAPTER 1—GENERAL
Freshly placed unconsolidated concrete contains excessive and detrimental entrapped air. If allowed to harden in this condition, the concrete will be porous and poorly bonded to the reinforcement. It will have low strength, high permeability, and poor resistance to deterioration. It may also have a poor appearance. The mixture should be consolidated if it is to have the properties desired and expected of concrete.

Consolidation is the process of inducing a closer arrangement of the solid particles in freshly mixed concrete or mortar during placement by the reduction of voids, usually by vibration, centrifugation (spinning), rodding, spading, tamping, or some combination of these actions.

Stiffer mixtures require greater effort to achieve proper consolidation. By using certain chemical admixtures (ACI 212.3R), consistencies requiring reduced consolidation effort can be achieved at lower water content. As the water content of the concrete is reduced, concrete strength, permeability, and other desirable properties improve, provided that the concrete is properly consolidated. Alternatively, the