Guide to Cold Weather Concreting

Reported by ACI Committee 306
ACI 306R-10

Guide to Cold Weather Concreting
Reported by ACI Committee 306

Stephen C. Morrical
Chair

Kim D. Basham
James R. Baty II
Terry C. Collins
D. Gene Daniel
David J. Elmer

Kevin A. MacDonald
Vice Chair

John P. Gnaedinger
Robert J. Hoopes
Kenneth C. Hover
Eric D. King

Timothy J. Lickel
Darmawan Ludirdja
William J. Lyons III
Zhongguo John Ma

Richard W. Melnechuk
Craig M. Newton
William D. Palmer Jr.
Valery Tokar

ACI Committee Reports, Guides, Manuals, Standard Practices, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

CONTENTS

Chapter 1—Introduction, p. 2

Chapter 2—Notation and definitions, p. 2
 2.1—Notation
 2.2—Definitions

Chapter 3—Objectives, principles, and economy, p. 3
 3.1—Objectives
 3.2—Principles
 3.3—Economy

Chapter 4—General requirements, p. 4
 4.1—Planning
 4.2—Protection during unexpected freezing
 4.3—Concrete temperature
 4.4—Temperature records
 4.5—Heated enclosures
 4.6—Finishing air-entrained slabs
 4.7—Concrete workability

Chapter 5—Temperature of concrete as mixed and placed, and heating of materials, p. 5
 5.1—Placement temperature
 5.2—Mixing temperature
 5.3—Heating mixing water
 5.4—Heating aggregates
 5.5—Steam heating of aggregates
 5.6—Overheating of aggregates
 5.7—Calculation of mixture temperature
 5.8—Temperature loss during delivery

ACI 306R-10 supersedes ACI 306R-88 and was adopted and published October 2010. Copyright © 2010. American Concrete Institute. All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
CHAPTER 1—INTRODUCTION

Cold weather exists when the air temperature has fallen to, or is expected to fall below 40°F (4°C) during the protection period. The protection period is defined as the time required to prevent concrete from being affected by exposure to cold weather. Concrete placed during cold weather will develop sufficient strength and durability to satisfy the intended service requirements when it is properly produced, placed, and protected. The necessary degree of protection increases as the ambient temperature decreases.

If requirements for cold weather concreting are needed in specification form, reference ACI 306.1. If necessary, add appropriate modifications to the contract documents after consulting the specification checklist.

This guide provides the necessary information for the contractor to select the best methods to satisfy the minimum cold weather concreting requirements.

CHAPTER 2—NOTATION AND DEFINITIONS

2.1—Notation

\[M = \text{maturity factor, degree-hour} \]
\[T = \text{temperature of concrete, °F (°C)} \]
\[T_a = \text{temperature of coarse aggregate, °F (°C)} \]
\[T_c = \text{temperature of cement, °F (°C)} \]
\[T_d = \text{temperature drop to be expected during a 1-hour delivery time, °F (°C). (This value should be added to } t_r \text{ to determine the required temperature of concrete at the plant.)} \]
\[T_o = \text{datum temperature, °F (°C)} \]
\[T_s = \text{temperature of fine aggregate, °F (°C)} \]
\[T_w = \text{temperature of added mixing water, °F (°C)} \]
\[t_a = \text{ambient air temperature, °F (°C)} \]
\[t_r = \text{concrete temperature required at the job, °F (°C)} \]
\[W_a = \text{saturated surface-dry weight of coarse aggregate, lb (kg)} \]
\[W_c = \text{weight of cement lb (kg)} \]
\[W_f = \text{saturated surface-dry weight of fine aggregate, lb (kg)} \]
\[W_v = \text{weight of mixing water, lb (kg)} \]
\[W_{sv} = \text{weight of free water on coarse aggregate, lb (kg)} \]
\[W_{sf} = \text{weight of free water on fine aggregate, lb (kg)} \]
\[w/cm = \text{water-cementitious material ratio} \]
\[\Delta t = \text{duration of curing period at temperature } T, \text{ degree-hour} \]

2.2—Definitions

ACI provides a comprehensive list of definitions through an online resource, “ACI Concrete Terminology,” http://terminology.concrete.org. Definitions provided herein complement that resource.

admixture—a material other than water, aggregates, cementitious materials, and fiber reinforcement, used as an ingredient of a cementitious mixture to modify its freshly mixed, setting, or hardened properties and that is added to the batch before or during its mixing.

backshores—shores placed snugly under a concrete slab or structural member after the original formwork and shores have been removed from a small area without allowing the