Guide to Placing Concrete by Pumping Methods

Reported by ACI Committee 304
This guide discusses the use of pumps for transporting and placing concrete. Rigid and flexible pipelines, couplings and other accessories, and the various types of concrete pumps are discussed. The importance of proportioning a pumpable concrete mixture is emphasized with reference to sources for further direction on its design. Evaluation of trial mixtures to ensure pumpability and strength is encouraged. Of specific importance is a discussion on the use of lightweight aggregates. Methods to saturate these aggregates and provide a consistent moisture content are discussed.

Preconstruction planning for equipment placement and line routing are emphasized. Discussions on achieving a consistent mixture and its critical importance are also addressed.

Keywords: blockage; boundary layer; concrete pump; coupling; mixture design; pipeline; placing boom; preprimed; pumpability; reverse pumping; valve.

CHAPTER 2—DEFINITIONS, p. 2

CHAPTER 3—PUMPING CONCRETE, p. 2

3.1—Mixture component distribution, p. 2
3.2—Disruptions to flow, p. 3

CHAPTER 4—PUMPING EQUIPMENT AND COMPONENTS, p. 4

4.1—Piston pumps, p. 4
4.2—Valve types, p. 4
4.3—Trailer pumps, p. 5
4.4—Truck-mounted concrete pumps, p. 5
4.5—Separate placing booms, p. 6
4.6—Specialized equipment, p. 6
4.7—Pipeline and accessories, p. 6
4.8—Flexible system hose types and applications, p. 9
4.9—Concrete placing system accessories, p. 9

CHAPTER 5—PUMPABLE CONCRETE, p. 11

5.1—Basic considerations, p. 11
5.2—Normalweight aggregate, p. 11
5.3—Lightweight aggregate concrete, p. 12
5.4—Water and slump, p. 12
5.5—Cementitious materials, p. 14
5.6—Admixtures, p. 14
5.7—Fiber reinforcement, p. 14
5.8—Trial mixtures and pumpability testing, p. 15
5.9—Estimating performance, p. 15
CHAPTER 1—INTRODUCTION AND SCOPE

1.1—Introduction

Pumping concrete through metal pipelines by piston pumps was introduced to the United States in Milwaukee, WI, in 1933 (Ball 1933). This concrete pump used mechanical linkages to operate, and usually pumped through pipelines 6 in. (150 mm) or larger in diameter.

Many new developments have since been made in the concrete pumping field. These include new and improved pumps, truck-mounted and stationary placing booms, and pipelines and hoses that withstand higher pumping pressures. Pumps are available with maximum theoretical output capacities of over 250 yd3/h (190 m3/h). As a result of these innovations, concrete placement by pumps has become one of the most widely used practices of the construction industry.

The construction industry recognizes that concrete pumping is useful when space for construction equipment is limited. Cranes and hoists are freed up and other crafts can work unhampered while pumping is in progress. Concrete pumps are designed to deliver the best combination of volume output and concrete line pressure possible.

How well the pump performs in an application depends on many factors, both internal and external to the equipment itself—for example, ambient temperature influences pump performance. Pipe diameter, pumping direction both for vertical and horizontal distance, and concrete mixture characteristics also have an effect.

As construction designs and projects become more sophisticated, such as requiring higher strength and greater durability, concrete mixture design today is more complex than what was traditionally placed (Putzmeister America, Inc 2010; American Concrete Pumping Association 2007, 2011b).

Pumpability is one consideration the contractor can request from the designer when specifying mixtures. Engineered mixtures, using special materials and processing, must consider design details including final strength, curing characteristics, site conditions such as underwater placement, material and handling expenses, flow characteristics, delivery/placement, and sustainability impacts. In cases where these features are in direct conflict, a compromise or alternate solution is necessary. Given the popularity and benefits of placement by pumping, it could become critical to a specific application that the components and proportions of a mixture be designed with consideration of pumpability.

There are many variables that could affect the successful pumping of a mixture in an application, including the specific requirements of a specific combination of materials, equipment components, and installation circumstances, of which several will be discussed in more detail in this guide.

This guide discusses concrete placement using the pumping method and how it affects the supplied concrete mixture when considering pumpability in mixture design, and with the goal to obtain optimum concrete pumping results.

1.2—Scope

This guide for concrete pumping discusses equipment use, proper mixtures for good pumpability, and field practices. References cited provide more detailed information on specific subjects. This guide does not address shotcreting or pumping of nonstructural insulating or cellular concrete.

CHAPTER 2—DEFINITIONS

- **boundary layer**—thin coating of mortar fraction that lines the inner pipeline wall during pumping.
- **degree of pumpability**—the amount of resistance of a specific concrete mixture to being pumped through a delivery pipeline.
- **pumpability**—capability of a specific concrete mixture to being pumped through a delivery pipeline.
- **relative movement**—ability of concrete components to navigate small distances within the mixture and to position differently compared to the other components.
- **stable concrete**—concrete mixture that resists the tendency to segregate.

CHAPTER 3—PUMPING CONCRETE

Pumped concrete moves as a cylinder riding on a thin lubricating film of grout or mortar on the inside diameter of the pipeline. Before pumping begins, the entire pipeline’s interior diameter must be coated with either grout or a specialized commercial primer using the methods for 100 percent coating of the pipe walls as recommended by the manufacturer. Once concrete flow through the pipeline is established, the lubrication will be maintained as long as pumping continues with a properly proportioned and consistent mixture. A steady supply of pumpable concrete, defined as a mixture that is capable of being pumped through a hose or pipe, is necessary for satisfactory pumping (U.S. Bureau of Reclamation 1981). A pumpable concrete, such as conventional concrete, requires good quality control; that is, it is uniform, has properly graded aggregate, and its materials are uniformly batched and mixed thoroughly.

3.1—Mixture component distribution

3.1.1 Boundary layer—From the concrete pump’s delivery cylinder to the point-of-placement end hose, effective and efficient concrete pumping depends on minimizing any