Guide to the Selection and Use of Hydraulic Cements

 Reported by ACI Committee 225
This guide covers the influence of cement on the properties of concrete, summarizing the composition and availability of commercial hydraulic cements and the factors affecting their performance in concrete. Cement is the most active component of concrete and usually has the greatest unit cost; therefore, its selection and proper use is imperative to attaining the desired balance of properties and cost for a particular concrete mixture. Selection should include consideration of the cement properties in relation to the required performance of the concrete. It includes a discussion of cement types, a brief review of cement chemistry, the influences of chemical admixtures and supplementary cementitious materials, as well as the effects of the environment on cement performance and reviews of the sustainability aspects for the use and manufacture of portland cement. Cement storage, delivery, sampling, and testing of hydraulic cements for conformance to specifications are addressed. Users will learn to recognize when a readily available, general-purpose cement will perform satisfactorily or when conditions require selection of a cement that meets additional requirements.

Keywords: admixture; blended cement; calcium-aluminate cement; cement storage; cement types; chemical analysis; hydraulic cement; physical properties; portland cement; pozzolan; slag cement; supplementary cementitious materials; sustainability.

CONTENTS

CHAPTER 1—INTRODUCTION AND SCOPE, p. 2
1.1—Introduction, p. 2
1.2—Scope, p. 2

CHAPTER 2—NOTATION AND DEFINITIONS, p. 3
2.1—Notation, p. 3
2.2—Definitions, p. 3

CHAPTER 3—CEMENT TYPES, AVAILABILITY, AND SELECTION, p. 3
3.1—Portland and blended hydraulic cements, p. 3
3.2—Special-purpose cement, p. 4
3.3—Research and development, p. 6
3.4—Rational approach to selection, p. 6

CHAPTER 4—CEMENT CHEMISTRY, p. 8
4.1—Portland cement, p. 8
4.2—Blended hydraulic cement, p. 10
4.3—Shrinkage-compensating expansive cement, p. 12
4.4—Calcium-aluminate cement, p. 13

CHAPTER 5—INFLUENCE OF CHEMICAL ADMIXTURES, POZZOLANS, AND SLAG CEMENTS ON CEMENTITIOUS SYSTEMS, p. 13
5.1—Air-entraining admixtures, p. 13
5.2—Other chemical admixtures, p. 14
5.3—Pozzolans, p. 15
5.4—Slag cements, p. 16

ACI Committee Reports, Guides, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

ACI 225R-19 supersedes ACI 225R-16 and was adopted and published August 2019. Copyright © 2019, American Concrete Institute. All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
CHAPTER 6—INFLUENCE OF ENVIRONMENTAL CONDITIONS ON THE HYDRATION OF CEMENTS, p. 16
6.1—Water requirements, p. 16
6.2—Temperature effects, p. 16
6.3—Composition, p. 16

CHAPTER 7—INFLUENCE OF CEMENT ON CONCRETE PROPERTIES, p. 16
7.1—Thermal cracking, p. 17
7.2—Placeability, p. 17
7.3—Strength, p. 18
7.4—Volume stability, p. 19
7.5—Elastic properties, p. 20
7.6—Creep, p. 20
7.7—Permeability, p. 20
7.8—Corrosion of embedded steel, p. 21
7.9—Resistance to freezing and thawing, p. 22
7.10—Resistance to chemical attack, p. 22
7.11—Resistance to high temperatures, p. 22
7.12—Aggregate reactions in concrete, p. 22
7.13—Color, p. 23

CHAPTER 8—CEMENT STORAGE AND DELIVERY, p. 24
8.1—Storage, p. 24
8.2—Pack set (sticky cement), p. 24
8.3—Delivery, p. 24
8.4—Contamination and handling, p. 24
8.5—Worker protection, p. 25

CHAPTER 9—SAMPLING AND TESTING HYDRAULIC CEMENTS FOR CONFORMANCE TO SPECIFICATIONS, p. 25
9.1—Cement mill test reports, p. 25
9.2—Sealed silos, p. 27
9.3—Cement certification, p. 27
9.4—Quality management, p. 28

CHAPTER 10—SUSTAINABILITY ASPECTS OF HYDRAULIC CEMENTS, p. 29
10.1—Hydraulic cements, p. 29
10.2—Energy consumption, p. 30
10.3—Use of SCMs as replacement for portland cement, p. 30
10.4—Use of cement in concrete, p. 30
10.5—Recycled raw materials as raw feed in the manufacture of portland cement, p. 30
10.6—Alternate fuels, p. 30
10.7—Combustion emissions, p. 31
10.8—Recent progress and strategy, p. 31

CHAPTER 11—REFERENCES, p. 31
Authored documents, p. 33

APPENDIX A—CALCIUM-ALUMINATE CEMENTS, p. 36
A.1—Manufacture and properties, p. 36

APPENDIX B—MANUFACTURER’S CERTIFICATION (MILL TEST REPORT), p. 39

CHAPTER 1—INTRODUCTION AND SCOPE

1.1—Introduction
This guide assists specifiers and designers in choosing appropriate cement for specified concrete applications. Although hydraulic cements are only one ingredient of a concrete mixture, they are the active ingredient and, therefore, play a key role in the long-term viability of the structure, floor, or pavement. Cement choice depends on many variables, such as the service conditions for which the concrete is designed, properties of other materials used in the mixture, or the performance characteristics of the concrete required during or shortly after placement.

Cement paste is the binder in concrete or mortar that holds the fine aggregate, coarse aggregate, or other constituents together in a hardened mass. The term “hydraulic” in this guide refers to the basic mechanism by which the hardening of the cement takes place—a chemical reaction between the cement and water. The term also differentiates hydraulic cement from binder systems that are based on other hardening mechanisms, as hydraulic cements can harden underwater.

Concrete properties depend on the quantities and qualities of its constituents. Because cement is the most active component of concrete and usually has the greatest unit cost, its selection and proper use are fundamental in obtaining the most economical balance of properties desired for a particular concrete mixture. Most cements will provide adequate levels of strength and durability for general use. Some provide higher levels of certain properties than are needed in specific applications.

1.2—Scope
This guide summarizes information about the composition, availability, and factors affecting the performance of commercial hydraulic cements. It also provides information regarding:

a) Cement selection, whether a cement is readily available, and if conditions require a general-purpose cement or a special cement
b) How the chemical and physical characteristics of a cement can affect certain properties of concrete
c) How interaction of cements with various additives, admixtures, and mixture designs can affect concrete

This guide deals with hydraulic cements manufactured in conformance with ASTM International, American Association
of State Highway and Transportation Officials (AASHTO), and Canadian Standards Association (CSA) standards. For information on other hydraulic cement standards, the user is directed to local specifications and building codes.

CHAPTER 2—NOTATION AND DEFINITIONS

2.1—Notation

Cement phases referred to throughout this guide follow the cement chemists’ notation as follows:

\[
\begin{align*}
A &= \text{Al}_2\text{O}_3 \\
C &= \text{CaO} \\
C &= \text{CO}_2 \\
F &= \text{Fe}_2\text{O}_3 \\
H &= \text{H}_2\text{O} \\
M &= \text{MgO} \\
S &= \text{SiO}_2 \\
\bar{S} &= \text{SO}_3 \\
\text{Na}_2\text{O}_{eq} &= \text{Na}_2\text{O} + 0.658 \cdot \text{K}_2\text{O} \\
\text{tricalcium silicate}^* &= 3\text{CaO} \cdot \text{SiO}_2 = \text{C}_3\text{S} \\
\text{dicalcium silicate} &= 2\text{CaO} \cdot \text{SiO}_2 = \text{C}_2\text{S} \\
\text{tricalcium aluminate} &= 3\text{CaO} \cdot \text{Al}_2\text{O}_3 = \text{C}_3\text{A} \\
\text{tetracalcium aluminoferrite} &= 4\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{Fe}_2\text{O}_3 = \text{C}_4\text{AF}
\end{align*}
\]

2.2—Definitions

Please refer to the latest version of ACI Concrete Terminology for a comprehensive list of definitions. Definitions provided herein complement that resource. An additional resource for definitions dealing with hydraulic cements is ASTM C219.

- **granulated blast-furnace slag**—the glass, granular material formed when molten blast-furnace slag is rapidly chilled, as by immersion in water.
- **hydration**—the chemical reaction between hydraulic cement and water forming new compounds most of which have strength-producing properties.
- **hydraulic cement**—a cement that sets and hardens by chemical reaction with water and is capable of doing so under water.
- **pozzolan**—a siliceous or siliceous and aluminous material, which in itself possesses little or no cementitious value but will, in finely divided form and in the presence of moisture, chemically react with calcium hydroxide at ordinary temperatures to form cementitious hydrates.
- **slag cement**—granulated blast-furnace slag that has been ground to cement fineness, with or without additions, and that is a hydraulic cement.

CHAPTER 3—CEMENT TYPES, AVAILABILITY, AND SELECTION

Cement selection is an important consideration when proportioning mixtures for specific project requirements and intended use. It is important that the specification for hydraulic cements be appropriate for the project and the hydraulic cements available in the area. Factors such as exposure conditions and desired properties can often require specific cement types based on the chemistry or physical properties. Specific cements may be available that are designed for applications where performance requirements cannot be achieved with ordinary portland cement.

3.1—Portland and blended hydraulic cements

A majority of the cement used for concrete construction in the United States is either portland cement, manufactured to meet the requirements of ASTM C150/C150M, blended hydraulic cement manufactured to meet the requirements of ASTM C595/C595M, or performance-based hydraulic cement manufactured to meet the requirements of ASTM C1157/C1157M. Tables 3.1a and 3.1b include basic characteristics of these cements as listed in ASTM. Other portland cement specifications can be found in AASHTO M 85 or, for Canada, in CSA A3001. Blended cements are also specified under the AASHTO M 240 requirements. For more on hydraulic cement specifications and selection, refer to 3.4 of this guide.

Portland cements are manufactured by a process that begins by combining a source of lime such as limestone, a source of silica and alumina such as clay, and a source of iron oxide such as iron ore. The property proportioned mixture of the raw materials is finely ground and then heated to approximately 2700°F (1480°C) for the reactions that form cement phases to take place. The product of a cement kiln is portland cement clinker. After cooling, the clinker is ground with calcium sulfate (gypsum), processing additions, and, in many cases, limestone to form a portland cement. Processing additions are organic or inorganic materials used in the manufacture of cements that are added at the finish mill. Their use is governed by ASTM C465. Processing addition rates for portland cements are specified in ASTM C150/C150M. The specific gravity of portland cement will vary slightly depending on the amounts of limestone, gypsum, and inorganic processing addition added to the clinker. For more reference on inorganic process addition, refer to Taylor (2008). Most of these additions are less dense than clinker and tend to reduce the specific gravity of the portland cement. When proportioning concrete mixtures, unless an actual measurement of the specific gravity of the cement has been made, 3.15 has been used for portland cement clinker. For specification purposes, portland and blended hydraulic cements are designated by type depending on their chemical composition and properties. The availability of

*Tricalcium silicate, C_3SiO_2, in conventional notation becomes $3\text{CaO} \cdot \text{SiO}_2$, in oxide notation, or C_3S in cement chemists’ notation. Simple oxides, such as CaO or SiO_2, are often written in full.