Report on Chemical Admixtures for Concrete

Reported by ACI Committee 212
Report on Chemical Admixtures for Concrete
Reported by ACI Committee 212

William S. Phelan*
Chair

Bradley K. Violetta*
Secretary

J. Floyd Best
Hamid Farzam
Monique Page
David B. Stokes*

Casimir Bognacki
Charles J. Korhonen*
Michael F. Pistilli
Bruce R. Strickland*

Marshall L. Brown
Darmawan Ladirdja
Kenneth B. Rear
Richard M. Wing

Lewis J. Cook
Ross S. Martin
Lawrence R. Roberts*
John B. Wojakowski*

Timothy Durning
Richard C. Mielenz
Arpad Savoly
Kari L. Yuers*

Roy Eller*
Pierre-Claver Nkinamubanzi*
Raymond J. Schutz

*Chairs of subcommittee that prepared this report.
The committee would like to thank Ketan R. Sompura* and Caroline M. Talbot* for their contributions to this report.

Chemical admixtures, which are primarily water-soluble substances, are discussed in detail and, in this report, are classified into 13 groups: air-entraining; accelerating; water-reducing and set-retarding; admixtures for flowing concrete; admixtures for self-consolidating concrete; cold weather admixture systems; admixtures for very high-early-strength concrete; extended set control; shrinkage-reducing; corrosion-inhibiting; lithium; permeability-reducing; and miscellaneous. Chemical admixtures are used on a daily basis in the cast-in-place and precast concrete industries. Twelve categories of admixtures are described in detail as to type, current usage, and their effect on concrete in the plastic and hardened state. Their benefits and common usage are outlined.

Each category of admixture addresses the benefits obtainable with their use in a properly proportioned concrete mixture, types of batching systems, control measures, and test placements for mixture design verification. Mixture designs using multiple chemical admixtures have become more common. Their successful usage requires proper compatibility and, often, setting times and early strengths that are proper for the placing environment. The potential benefits are highlighted to all members of the concrete team, concrete contractor, concrete producer, admixture supplier, and testing personnel.

Finely divided mineral admixtures are addressed by ACI 232.2R “Use of Fly Ash in Concrete,” ACI 232.1R “Use of Raw or Processed Natural Pozzolans in Concrete” and ACI 234R “Guide for the Use of Silica Fume in Concrete.”

Keywords: accelerating; admixture; admixture system; air-entraining; alkali-aggregate reaction; flowing concrete; high-range water-reducing admixture; permeability-reducing admixtures; self-consolidating concrete; shrinkage-reducing; water-reducing and set-retarding.

ACI Committee Reports, Guides, Manuals, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

ACI 212.3R-10 supersedes 212.3R-04 and was adopted and published November 2010. Copyright © 2010, American Concrete Institute. All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
ADMIXTURES, THEIR CHARACTERISTICS, AND USAGE

<table>
<thead>
<tr>
<th>Admixture type</th>
<th>Effects and benefits</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-entraining (ASTM C260 and AASHTO M154)</td>
<td>Improve durability in freezing and thawing, deicer, sulfate, and alkali-reactive environments. Improve workability.</td>
<td>Salts of wood resins, some synthetic detergents, salts of sulfonated lignin, salts of petroleum acids, salts of proteinaceous material, fatty and resinous acids and their salts, tall oils and gum rosins salts, alkylbenzene sulfonates, salts of sulfonated hydrocarbons.</td>
</tr>
<tr>
<td>Accelerating (ASTM C494/C494M and AASHTO M194, Type C or E)</td>
<td>Accelerate setting and early-strength development.</td>
<td>Calcium chloride (ASTM D98 and AASHTO M144), triethanolamine, sodium thiocyanate, sodium/calcium formate, sodium/calcium nitrite, calcium nitrate, aluminates, silicates.</td>
</tr>
<tr>
<td>Water-reducing (ASTM C494/C494M and AASHTO M194, Type A)</td>
<td>Reduce water content at least 5%.</td>
<td>Lignosulfonic acids and their salts, Hydroxylated carboxylic acids and their salts. Polyaccharidues, melamine polycondensation products, naphthalene polycarboxylates, and polycarboxylates.</td>
</tr>
<tr>
<td>Water-reducing and set-retarding (ASTM C494/C494M and AASHTO M194, Type F or G)</td>
<td>Reduce water content at least 5%. Delay set time.</td>
<td>See water reducer, Type A (retarding component is added).</td>
</tr>
<tr>
<td>High-range water-reducing (ASTM C494/C494M and AASHTO M194, Type D)</td>
<td>Reduce water content by at least 12 to 40%, increase slump, decrease placing time, increase flowability of concrete, used in self-consolidating concrete (SCC).</td>
<td>Melamine sulfonate polycondensation products, naphthalene sulfonate polycondensation products, and polycarboxylates.</td>
</tr>
<tr>
<td>Mid-range water-reducing (ASTM C494/C494M, Type A)</td>
<td>Reduce water content by between 5% and 10% without retardation of initial set.</td>
<td>Lignosulfonic acids and their salts. Polycarboxylates.</td>
</tr>
<tr>
<td>Extended set control (hydration control) (ASTM C494/C494M, Type B or D)</td>
<td>Used to stop or severely retard the cement hydration process. Often used in wash water and in returned concrete for reuse, and can provide medium- to long-term set retardation for long hauls. Retain slump life in a more consistent manner than normal retarding admixtures.</td>
<td>Carboxylic acids. Phosphorus-containing organic acid salts.</td>
</tr>
<tr>
<td>Shrinkage-reducing</td>
<td>Reduce drying shrinkage. Reductions of 30 to 50% can be achieved.</td>
<td>Polyoxymethylene alkyl ether. Propylene glycol.</td>
</tr>
<tr>
<td>Corrosion-inhibiting (ASTM C1582/C1582M)</td>
<td>Significantly reduce the rate of steel corrosion and extend the time for onset of corrosion.</td>
<td>Amine carboxylates amines for organic emulsion, calcium nitrite, organic alkylarboxylics. Chromates, phosphates, hypophosphites, alkalis, and fluorides.</td>
</tr>
<tr>
<td>Lithium admixtures to reduce deleterious expansions from alkali-silica reaction</td>
<td>Minimize deleterious expansions from alkali-silica reaction.</td>
<td>Lithium nitrate, lithium carbonate, lithium hydroxide, and lithium nitrite.</td>
</tr>
<tr>
<td>Permeability-reducing admixture: non-hydrostatic conditions (PRAH)</td>
<td>Water-repellent surface, reduced water absorption. Long-chain fatty acid derivatives (stearic, oleic, caprylic capric), petroleum derivatives (mineral oil, paraffin, bitumen emulsions), and fine particle fillers (silicates, bentonite, talc).</td>
<td>Cryostalline hydrophilic polymers (latex, water-soluble, or liquid polymer).</td>
</tr>
<tr>
<td>Permeability-reducing admixture: hydrostatic conditions (PRAH)</td>
<td>Reduced permeability, increased resistance to water penetration under pressure.</td>
<td>Polyvinyl chloride, polyvinyl acetate, acrylates, and butadiene-styrene copolymers.</td>
</tr>
<tr>
<td>Bonding</td>
<td>Increase bond strength.</td>
<td>Carbon black, iron oxide, phthalocyanine, raw burntumber, chromium oxide, and titanium dioxide.</td>
</tr>
<tr>
<td>Coloring</td>
<td>Colored concrete.</td>
<td>Vinyl acetate-maleic anhydride copolymer.</td>
</tr>
<tr>
<td>Flocculating</td>
<td>Increase interparticle attraction to allow paste to behave as one large floc.</td>
<td>Polyhalogenated phenols, emulsion, and copper compounds.</td>
</tr>
<tr>
<td>Fungicidal, bacterial, and insecticidal</td>
<td>Inhibit or control bacterial, fungal, and insecticidal growth.</td>
<td>Polyelectrolytes, cellulose ethers (HEC, HPMC), alginites (from seaweed), natural and synthetic gums, and polyacrylamides or polyvinyl alcohol.</td>
</tr>
<tr>
<td>Rheology/viscosity-modifying</td>
<td>Modify the rheological properties of plastic concrete.</td>
<td>Tributyl phosphate, dibutyl phosphate, dibutylphthalate, polydimethylsiloxane, dodecyl (lauryl) alcohol, octyl alcohol, polypropylene glycols, water-soluble esters of carbonic and boric acids, and lower sulfonate salts.</td>
</tr>
<tr>
<td>Air-detraining</td>
<td>Reduce air in concrete mixtures, cement slurries, and other cementing applications.</td>
<td></td>
</tr>
</tbody>
</table>
4.8—Quality assurance
4.9—Batching
4.10—Storage

Chapter 5—Accelerating admixtures, p. 12
5.1—Introduction
5.2—Materials
5.3—Selection and evaluation
5.4—Applications
5.5—Proportioning concrete
5.6—Effects on fresh and hardening concrete
5.7—Effects on hardened concrete
5.8—Corrosion of metals
5.9—Quality assurance
5.10—Batching
5.11—Storage

Chapter 6—Water-reducing and set-retarding admixtures, p. 16
6.1—Introduction
6.2—Materials
6.3—Selection and evaluation
6.4—Applications
6.5—Dosage
6.6—Proportioning concrete
6.7—Effects on fresh and hardening concrete
6.8—Effects on hardened concrete
6.9—Batching and quality control
6.10—Storage

Chapter 7—Admixtures for flowing concrete, p. 20
7.1—Introduction
7.2—Materials
7.3—Selection and evaluation
7.4—Applications
7.5—Proportioning concrete
7.6—Effects on fresh and hardening concrete
7.7—Effects on hardened concrete
7.8—Quality assurance
7.9—Storage

Chapter 8—Admixtures for self-consolidating concrete, p. 23
8.1—Introduction
8.2—Materials for SCC admixtures
8.3—Selection and evaluation
8.4—Proportioning concrete
8.5—Effects on fresh and hardening concrete
8.6—Effects on hardened concrete
8.7—Quality assurance
8.8—Batching
8.9—Storage

Chapter 9—Cold weather admixture systems, p. 28
9.1—Introduction
9.2—Materials
9.3—Selection and evaluation
9.4—Proportioning concrete
9.5—Batching
9.6—Trial placement
9.7—Placing and finishing
9.8—Effects on fresh and hardening concrete
9.9—Effects on hardened concrete
9.10—Quality assurance
9.11—Cost benefit
9.12—Storage

Chapter 10—Admixtures for very high-early-strength concrete, p. 30
10.1—Introduction
10.2—Materials for very high-early-strength concrete
10.3—Selection and evaluation
10.4—Proportioning concrete
10.5—Effects on fresh and hardening concrete
10.6—Effects on hardened concrete
10.7—Quality assurance
10.8—Batching
10.9—Storage

Chapter 11—Extended set-control admixtures, p. 33
11.1—Introduction
11.2—Materials
11.3—Selection and evaluation
11.4—Applications
11.5—Proportioning concrete
11.6—Effects on fresh and hardening concrete
11.7—Effects on hardened concrete
11.8—Quality assurance
11.9—Batching
11.10—Storage

Chapter 12—Shrinkage-reducing admixtures, p. 35
12.1—Introduction
12.2—Materials
12.3—Mode of action
12.4—Applications
12.5—Proportioning concrete
12.6—Effects on fresh and hardening concrete
12.7—Effects on hardened concrete
12.8—Quality assurance
12.9—Storage

Chapter 13—Corrosion-inhibiting admixtures, p. 37
13.1—Introduction
13.2—Materials
13.3—Selection and evaluation
13.4—Applications
13.5—Proportioning concrete
13.6—Effects on fresh and hardening concrete
13.7—Effects on hardened concrete
13.8—Quality assurance
13.9—Storage

Chapter 14—Lithium admixtures to reduce deleterious expansion from alkali-silica reaction, p. 44
14.1—Introduction
Chapter 16—Miscellaneous admixtures, p. 50

16.1—Bonding admixtures
16.2—Coloring admixtures
16.3—Flocculating admixtures
16.4—Fungicidal, germicidal, and insecticidal admixtures
16.5—Rheology- and viscosity-modifying admixtures
16.6—Air-detraining admixtures
16.7—Storage

Chapter 17—References, p. 52

17.1—Referenced standards and reports
17.2—Cited references

CHAPTER 1—I N T R O D U C T I O N

1.1—Introduction

An admixture is defined as “a material other than water, aggregates, hydraulic cement, and fiber reinforcement used as an ingredient of concrete or mortar, and added to the batch immediately before or during its mixing” (American Concrete Institute 2010; ASTM C125). Chemical admixtures are primarily water-soluble substances used to enhance the properties of concrete or mortar in the plastic and hardened state. These benefits include increased compressive and flexural strength at all ages, decreased permeability and improved durability, corrosion reduction, shrinkage reduction, initial set adjustments, increased slump and workability, improved pumpability, finish and finishability, rheology modification, improved cement efficiency, alkali-silica reaction (ASR) reduction, and concrete mixture economy.

An admixture or combination of admixtures may be required to achieve the specific desired results; however, proper mixture designs are required for optimum benefits. In certain instances, a desired objective may be best achieved by mixture changes in addition to proper admixture usage. Chemical admixtures are not a substitute for suitable concrete mixture proportions and acceptable construction practices.

This report deals with commonly used admixtures other than those assigned to other ACI committees. Materials, such as mineral admixtures, used to produce concrete are not discussed in this report.

The chemical admixtures are classified generically or with respect to their characteristics. Information to characterize each class is presented with brief statements of the general purposes and expected effects of each group of materials. The wide scope of the admixture field, the continued entrance of new or modified materials into this field, and the variations of effects with different concreting materials and conditions preclude a complete listing of all admixtures and their effects on concrete. Summaries of the state of the art of chemical admixtures include Ramachandran and Malhotra (1984), Ramachandran and Mailvaganam (1992), Mather (1994), Nkinamubanzi and Aitcin (2004), Collepardi and Valente (2006), and “Chemical Admixtures for Concrete,” ACI Education Bulletin E4-03 (ACI Committee E703 2003).

CHAPTER 2—DEFINITIONS

2.1—Definitions

ACI provides a comprehensive list of definitions through an online resource, “ACI Concrete Terminology,” http://terminology.concrete.org. Definitions provided herein complement that resource.

admixture—a material other than water, aggregates, cementitious materials, and fiber reinforcement, used as an ingredient of a cementitious mixture to modify its freshly mixed, setting, or hardened properties and that is added to the batch before or during its mixing.

admixture, accelerating—an admixture that causes an increase in the rate of hydration of the hydraulic cement and thus shortens the time of setting, increases the rate of strength development, or both.

admixture, air-entaining—an admixture that causes the development of a system of microscopic air bubbles in concrete, mortar, or cement paste during mixing, usually to increase its workability and resistance to freezing and thawing.

admixture, retarding—an admixture that causes a decrease in the rate of hydration of the hydraulic cement and lengthens the time of setting.

admixture, water-reducing—an admixture that either increases slump of a fresh cementitious mixture without increasing water content or maintains slump with a reduced amount of water, the effect being due to factors other than air entrainment.

admixture, water-reducing (high-range)—a water-reducing admixture capable of producing great water reduction, great flowability, or both, without causing undue set retardation or air entrainment in cementitious paste.

adsorption—development (at the surface of either a liquid or solid) of a higher concentration of a substance than exists in the bulk of the medium; especially formation of one or more layers of molecules of gases, of dissolved substances, or of liquids at the surface of a solid (such as cement, cement paste, or aggregates), or of air-entraining agents at the air-water interfaces; also the process by which a substance is adsorbed.

air, entrained—microscopic air bubbles intentionally incorporated in a cementitious paste during mixing, usually by use of a surface-active agent; typically between 0.0004 and 0.04 in. (10 and 1000 μm) in diameter and spherical or nearly so.