Guide for Selecting Proportions for High-Strength Concrete Using Portland Cement and Other Cementitious Materials

Reported by ACI Committee 211
ACI 211.4R-08

Guide for Selecting Proportions for High-Strength Concrete Using Portland Cement and Other Cementitious Materials

Reported by ACI Committee 211

Frank A. Kozeliski
Chair

Donald E. Dixon
Allyn C. Luke*

G. Michael Robinson

William L. Barringer*
Donald E. Dixon
Allyn C. Luke*

Howard P. Lux

Anton Karel Schindler

Muhammed P. A. Basheer
Calvin L. Dodl
Gary R. Mass

James M. Shilstone, Sr.

Casimir Bogacki
Darrell F. Elliott
Warren E. McPherson, Jr.

Ava Shypula*

Michael J. Boyle*
Timothy S. Folks
Jon I. Mullarky

Jeffrey F. Speck

Marshall L. Brown
G. Terry Harris, Sr.
H. Celik Ozyildirim

William X. Sypher

Ramon L. Carasquillo
Richard D. Hill
Dipak T. Parekh

Stanley J. Virgalitte

James E. Cook*
David L. Hollingsworth
James S. Pierce

Woodward L. Vogt

John F. Cook
Said Iravani
James Don Powell

James A. Wamelink

Raymond A. Cook
Tarif M. Jaber†
Steven A. Ragan

Michael A. Whisonant

David A. Crocker
Robert S. Jenkins
Royce J. Rhoads

Dean J. White, II

D. Gene Daniel†
Gary Knight
John P. Ries

Richard M. Wing

François de Larrard
Colin L. Lobo

The committee would like to recognize Tony Kojundic, Robert Lewis, and Michael Gardner for their significant contributions to this report.

This guide presents general methods for selecting mixture proportions for high-strength concrete and optimizing these mixture proportions on the basis of trial batches. The methods are limited to high-strength concrete containing portland cement and fly ash, silica fume, or slag cement (formerly referred as ground-granulated blast-furnace slag) and produced using conventional materials and production techniques.

Recommendations and tables are based on current practice and information provided by contractors, concrete suppliers, and engineers who have been involved in projects dealing with high-strength concrete.

Keywords: aggregate; fly ash; high-range water-reducing admixture; high-strength concrete; mixture proportion; quality control.

ACI Committee Reports, Guides, Manuals, Standard Practices, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

CONTENTS

Chapter 1—Introduction and scope, p. 211.4R-2
1.1—Introduction
1.2—Scope

Chapter 2—Notation and definitions, p. 211.4R-2
2.1—Notation
2.2—Definitions

Chapter 3—Performance requirements, p. 211.4R-2
3.1—Test age
3.2—Required average compressive strength \( f'_{cr} \)
3.3—Other requirements

Chapter 4—Concrete materials, p. 211.4R-3
4.1—Introduction
4.2—Portland cement
4.3—Fly ash

ACI 211.4R-08 supersedes ACI 211.4R-93 and was adopted and published December 2008.

Copyright © 2008, American Concrete Institute.

All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
CHAPTER 1—INTRODUCTION AND SCOPE

1.1—Introduction

ACI 211.1 describes methods for selecting proportions for normal-strength concrete in the range of 2000 to 6000 psi. This guide supplements ACI 211.1 by presenting several methods for selecting mixture proportions for high-strength concrete and for optimizing these proportions on the basis of trial batches. Usually, for high-strength concrete mixtures specially selected cementitious materials and chemical admixtures are used, and achieving a low water-cementitious material ratio \( \text{w/cm} \) is considered essential. Many trial mixtures are often required to generate the data necessary to identify optimum mixture proportions.

1.2—Scope

Discussion in this guide is limited to high-strength concrete produced using conventional materials and production methods.

While high-strength concrete is defined in ACI 363.2R as concrete that has a specified compressive strength \( f_c' \) of 8000 psi or greater, this guide provides methods for selecting mixture proportions for \( f_c' \) greater than 6000 psi. The following recommendations are based on accepted ACI 211.1 methods, current practice, and information from contractors, concrete suppliers, and engineers who have been involved in projects dealing with high-strength concrete. The reader may refer to ACI 363R for a more complete list of publications and references available on this topic.

CHAPTER 2—NOTATION AND DEFINITIONS

ACI provides a comprehensive list of acceptable notation and definitions through an online resource, “ACI Concrete Terminology” (American Concrete Institute 2008).

2.1—Notation

\[ f_c' = \text{compressive strength} \]
\[ f_{cr} = \text{required average compressive strength} \]

2.2—Definitions

- **cement, slag**—granulated blast-furnace slag that has been finely ground and that is hydraulic cement. Note: before March 1, 2003, defined as: “hydraulic cement consisting mostly of an intimate and uniform blend of granulated blast-furnace slag and portland cement, hydrated lime, or both, in which the slag constituent is at least 70% by mass of the finished product.”
- **fly ash**—the finely divided residue that results from the combustion of ground or powdered coal and that is transported by flue gases from the combustion zone to the particle removal system.
- **materials, cementitious**—cements and pozzolans used in concrete and masonry construction.
- **pozzolan**—a siliceous or siliceous and aluminous material that in itself possesses little or no cementitious value but that will, in finely divided form and in the presence of moisture, chemically react with calcium hydroxide at ordinary temperatures to form compounds having cementitious properties; there are both natural and artificial pozzolans.
- **silica fume**—very fine noncrystalline silica produced in electric arc furnaces as a by-product of the production of elemental silicon or alloys containing silicon.
- **strength**—the ability of a material to resist strain or rupture induced by external forces. The following terms are defined herein for the purpose of clarification and used throughout this report:
  - **binary mixtures**—concrete mixtures that contain two supplementary cementitious materials.
  - **high strength**—specified compressive strength \( f_c' \) greater than 6000 psi.
  - **normal strength**—specified compressive strength \( f_c' \) equal to or less than 6000 psi.
  - **quad blends**—concrete mixtures that contain four supplementary cementitious materials.
  - **slag index**—percent of compressive strength increase resulting from the slag cement dosage relative to the 28-day compressive strength of the same mixture without slag cement.
  - **ternary mixtures**—concrete mixtures that contain more than three supplementary cementitious materials.

CHAPTER 3—PERFORMANCE REQUIREMENTS

3.1—Test age

The selection of mixture proportions can be influenced by the age at which the strength level is required. Because most