Report on the Erosion of Concrete in Hydraulic Structures

Reported by ACI Committee 207
This report outlines the causes, control, maintenance, and repair of erosion in hydraulic structures. Such erosion occurs from three major causes: cavitation, abrasion, and chemical attack. Design parameters, materials selection and quality, environmental factors, and other issues affecting the performance of concrete are discussed.

Evidence exists to suggest that, given the operating characteristics and conditions to which a hydraulic structure will be subjected, the concrete can be designed to mitigate future erosion. However, when operational factors change or are not clearly known and erosion of concrete surfaces occurs, repairs should follow. This report addresses the subject of concrete erosion, inspection techniques, and repair strategies, providing references to a more detailed treatment of the subject.

Keywords: abrasion; aeration; cavitation; chemical attack; concrete dams; corrosion; erosion; hydraulic structures; spillways.

 CONTENTS

CHAPTER 1—INTRODUCTION AND SCOPE, p. 2
1.1—Introduction, p. 2
1.2—Scope, p. 2

CHAPTER 2—NOTATION, p. 2
2.1—Notation, p. 2

CHAPTER 3—erosion BY CAVITATION, p. 3
3.1—Mechanism of cavitation, p. 3
3.2—Cavitation index, p. 3
3.3—Cavitation damage, p. 4

CHAPTER 4—erosion BY ABRASION, p. 6
4.1—General, p. 6
4.2—Stilling basin damage, p. 6
4.3—Power plant tailrace damage, p. 7
4.4—Navigation lock damage, p. 8
4.5—Tunnel lining damage, p. 8
4.6—Hydraulic jacking, p. 8

CHAPTER 5—EROSION BY CHEMICAL ATTACK, p. 9
5.1—Sources of external chemical attack, p. 9
5.2—Erosion by mineral-free water, p. 9
5.3—Erosion by miscellaneous causes, p. 9

CHAPTER 6—CONTROL OF CAVITATION EROSION, p. 10
6.1—Hydraulic design principles, p. 10
Example 1, p. 10
6.2—Cavitation indexes for damage and construction tolerances, p. 11
Example 2, p. 11
6.3—Using aeration to control damage, p. 12
6.4—Materials, p. 13
6.5—Materials testing, p. 14
6.6—Construction practices, p. 14

CHAPTER 7—CONTROL OF ABRASION EROSION, p. 15
7.1—Hydraulic considerations, p. 15
7.2—Materials evaluation, p. 16
7.3—Materials, p. 16

CHAPTER 8—CONTROL OF EROSION BY CHEMICAL ATTACK, p. 17
8.1—Control of erosion by mineral-free water, p. 17
8.2—Control of erosion from acid attack due to bacterial action, p. 18
8.3—Control of erosion by miscellaneous chemical causes, p. 18

CHAPTER 9—PERIODIC INSPECTIONS AND CORRECTIVE ACTION, p. 19
9.1—General, p. 19
9.2—Inspection program, p. 19
9.3—Inspection procedures, p. 19
9.4—Reporting and evaluation, p. 19

CHAPTER 10—REPAIR METHODS AND MATERIALS, p. 20
10.1—Design considerations, p. 20
10.2—Methods and materials, p. 20

CHAPTER 11—REFERENCES, p. 22
Authored documents, p. 23

CHAPTER 1—INTRODUCTION AND SCOPE

1.1—Introduction
Erosion is the progressive disintegration of a solid by:
1) cavitation; 2) abrasion; or 3) chemical action. Although concrete deteriorates for a variety of reasons, this report is concerned with specific factors that influence these three areas of erosion: 1) cavitation-erosion resulting from the collapse of vapor bubbles formed by pressure changes within a high-velocity water flow; 2) abrasion-erosion of concrete in hydraulic structures caused by water-transported silt, sand, gravel, ice, debris, or hydraulic jacking; and 3) chemical action-disintegration of the concrete in hydraulic structures by chemical attack.

Concrete in properly designed, constructed, used, and maintained hydraulic structures can provide 30 to 50 years of erosion-free service (Liu and Wang 2000). However, for reasons including inadequate design or construction, or operational and environmental changes, erosion does occur in hydraulic structures.

1.2—Scope
Concrete erosion in hydraulic structures caused by cavitation, abrasion, and chemical attack are included in this report. Options available to the designer and user to control concrete erosion in hydraulic structures are discussed, along with information on the inspection and evaluation of erosion problems. This report includes repair techniques, as well as a brief guide to methods and materials for repair. Other types of concrete deterioration are outside the scope of this report.

CHAPTER 2—NOTATION

2.1—Notation
\(F \) = force
\(l \) = length of air space between the jet and the spillway floor, \(\ell (\ell = \text{length}) \)
\(p \) = water pressure at a given point, \(F/\ell^2 \)
\(p_0 \) = absolute pressure at a given Point 0, \(F/\ell^2 \)
\(p_c \) = absolute pressure at a given Point c, \(F/\ell^2 \)
\(p_v \) = vapor pressure of water, \(F/\ell^2 \)
\(q_a \) = volume rate of air entrainment per unit width of jet, \(\ell^3/T \)
\(q_d \) = amount of air a turbulent jet will entrain along its lower surface, \(\ell^3/T \)
\(T \) = time
\(v \) = average jet velocity at midpoint of trajectory, \(\ell/T \)
\(v_0 \) = average velocity at Section 0, \(\ell/T \)
\(Y_0 \) = offset into the flow, \(\ell \)
\(z_0 \) = elevation at centerline of pipe, \(\ell \)
\(z_c \) = elevation of the vapor bubble, \(\ell \)
\(\alpha \) = width of jet coefficient based on turbulent intensity of the jet
\(\Delta p \) = change in pressure between two points, \(F/\ell^2 \)
\(\gamma \) = specific weight of water, \(F/\ell^3 \) \([62.4 \text{ lb} / \text{ft}^3 \ [9.81 \text{ kN/ m}^3] \), temperature-dependent \)
\(\rho \) = mass density of water, \(FT^2/\ell^4 \) \([1.94 \text{ lb} \cdot \text{s}^2 / \text{ft}^4 \ [1000 \text{ kg/m}^3] \), temperature-dependent \)
\(\sigma \) = cavitation index
\(\sigma_c \) = value of cavitation index at which cavitation initiates
CHAPTER 3—EROSION BY CAVITATION

3.1—Mechanism of cavitation

Cavitation is the formation of bubbles or cavities in a liquid. In hydraulic structures, the liquid is water, and the cavities are filled with water vapor and air. The cavities form where the local pressure drops to a value that will cause the water to vaporize at the prevailing fluid temperature. Figure 3.1a shows examples of concrete surface irregularities that can trigger formation of these cavities. The pressure drop caused by these irregularities is generally abrupt and is caused by local high velocities and curved streamlines. Cavities often begin to form near curves or offsets in a flow boundary or at the centers of vortexes.

When the geometry of flow boundaries causes streamlines to curve or converge, the pressure may drop in the direction toward the center of curvature or in the direction along the converging streamlines. For example, Fig. 3.1b shows a tunnel contraction in which a cloud of cavities could start to form at Point (c) and then collapse at Point (d). The velocity near Point (c) is much higher than the average velocity in the tunnel upstream, and the streamlines near Point (c) are curved. Thus, for proper values of flow rate and tunnel pressure at Point (0), the local pressure near Point (c) drops to the vapor pressure of water and cavities will occur. Cavitation damage is produced when the vapor cavities collapse. The collapses that occur near Point (d) produce high instantaneous pressures that impact on the boundary surfaces and cause pitting, noise, and vibration. Pitting by cavitation is readily distinguished from the worn appearance caused by abrasion because cavitation pits cut around the harder coarse aggregate particles and have irregular and rough edges.

3.2—Cavitation index

The cavitation index is a dimensionless measure used to characterize the susceptibility of a system to cavitate. Figure 3.2 illustrates the design principle of the cavitation index in a tunnel contraction. In such a system, the critical location (or point) for cavitation is at Point (c) (Fig. 3.1b).

The static fluid pressure, where the velocity is essentially the same as the approach velocity, at Point (1) will be

\[p_1 = p_c + \gamma(z_c - z_0) \]

where \(p_c \) is the absolute static pressure at Point (c); \(\gamma \) is the specific weight of the fluid (weight per unit volume); \(z_c \) is the elevation at Point (c); and \(z_0 \) is the elevation at Point (0).

The pressure drop in the fluid as it moves along a streamline from the reference Point (0) to Point (1) will be

\[\Delta p = p_0 - [p_c + \gamma(z_c - z_0)] \]

where \(p_0 \) is the static pressure at Point (0).

The cavitation index normalizes this pressure drop to the dynamic pressure. Dynamic pressure is the difference between the total pressure (pressure at the point of stagnation) and the static pressure, \(1/2\rho v_0^2 \) (Eq. (3.2b)).

\[\sigma = \frac{p_0 - [p_c + \gamma(z_c - z_0)]}{1/2\rho v_0^2} \]

where \(\rho \) is the density of the fluid (mass per unit volume), and \(v_0 \) is the fluid velocity at Point (0).

Readers familiar with the field of fluid mechanics may recognize the cavitation index as a special form of the Euler number or pressure coefficient, a matter discussed in Rouse (1978).

If cavitation is just beginning and there is a bubble of vapor at Point (c), the pressure in the fluid adjacent to the bubble is approximately the pressure within the bubble, which is the vapor pressure \(p_v \) of the fluid at the fluid’s temperature.

Therefore, the pressure drop along the flow from Point (0) to (1) required to produce cavitation at the crown is

\[\Delta p = p_v - [p_c + \gamma(z_c - z_0)] \]