EXAMPLES OF LARGE EQUATIONS:

$$M_{a} = A_{s}f_{s} \cdot jd \quad \text{where} \quad jd = \left[\int_{0}^{c} z\sigma_{u}(z)dz\right] / \left[\int_{0}^{c}\sigma_{u}(z)dz\right] + d - c \tag{1}$$

$$f_{b,O} = \left[\left(0.4 + \frac{c}{d_b} \right) \frac{l_s}{d_b} + 16.6 + 0.10 \frac{A_{tr} f_{yt} l_s}{s_{tr} d_b^2 n} \right] \sqrt{f_c'} \quad \text{(MPa)}$$

$$= \left[\left(4.8 + 12 \frac{c}{d_b} \right) \frac{l_s}{d_b} + 200 + \frac{A_{tr} f_{yt} l_s}{125 s_{tr} d_b^2 n} \right] \sqrt{f_c'} \quad \text{(psi)}$$

$$f(\varphi) = \begin{cases} 0 & 0.0 \le \varphi \le 0.50 \\ 100 \times \varphi - 50 & 0.50 \le \varphi \le 0.51 \\ 1 & 0.51 \le \varphi \le 0.65 \\ 53,566 \times \varphi^3 - 109.38 \times \varphi^2 + 68,158 \times \varphi - 11,801 & 0.65 \le \varphi \le 0.85 \\ 0 & 0.85 \le \varphi \le 1.0 \end{cases}$$
(10)

$$\theta_{p}^{N} = \left(\delta_{u} - \delta_{e}\right) + \left(\frac{1}{2} + \frac{\lambda' - 1}{\lambda}\right) \left(\frac{L_{b}}{3EI_{b}}\right) M^{R} + \left(\frac{L_{r}}{L_{b}}\right) \left(\delta_{u} - \delta_{e}\right)$$

$$\geq \theta_{p}^{S} + \left(\frac{L_{r}}{L_{b}}\right) \left[\left(\delta_{i}^{S} + \delta_{e}\right) - \delta_{e}\right]$$
(9b)

$$\theta_{p}^{N} = \left(\delta_{u} - \delta_{e}\right) + \left(\frac{L_{b}}{6EI_{b}}\right) \left(\frac{L_{b}}{L_{b}''}\right) M^{R} + \left(\frac{L_{r}}{L_{b}'}\right) \left(\delta_{u} - \delta_{e}\right) + \left(\frac{L_{b} - L_{b}'}{L_{b}'}\right) \left(\delta_{u} - \delta_{e}\right)$$

$$= \left(\delta_{u} - \delta_{e}\right) \left(\frac{L_{b} + L_{r}}{L_{b}'}\right) + \left(\frac{L_{b}}{6EI_{b}}\right) \left(\frac{L_{b}}{L_{b}''}\right) M^{R} \ge \theta_{p,min}$$

$$(11b)$$

EXAMPLES OF SMALL TABLES:

properties	relage values of con	I able I—Av	
E_{ct} , MPa (psi) E_c , MPa (ksi)	<i>fc</i> , MPa (psi)	Age at testing, days	Test
2.8 (410) 31,000 (4490)	43.1 (6250)	37	SR2
3.0 (440) 31,900 (4630)	50.6 (7340)	79	SR3
2.6 (370) 33,100 (4790)	47.5 (6900)	102	SR4
2.6 (380) 33,100 (4800)	47.6 (6910)	107	SR5
3.3 (480) 33,600 (4880)	52.7 (7640)	288	SR6
3.2 (460) 32,600 (4730)	49.1 (7120)	291	SR7
3.2 (460) 32,600 (4730)	49.2 (7130)	299	SR8
3.3 (480) 33,800 (4900)	52.8 (7660)	311	SR9
2.5 (360) 31,700 (4590)	42.4 (6150)	95	SR10
2.7 (390) 31,800 (4620)	42.9 (6220)	106	SR11
2.9 (420) 32,100 (4650)	43.5 (6310)	121	SR12
3.3 (480) 33,600 3.2 (460) 32,600 3.2 (460) 32,600 3.3 (480) 33,800 2.5 (360) 31,700 2.7 (390) 31,800 2.9 (420) 32,100	52.7 (7640) 49.1 (7120) 49.2 (7130) 52.8 (7660) 42.4 (6150) 42.9 (6220) 43.5 (6310)	288 291 299 311 95 106 121	SR6 SR7 SR8 SR9 SR10 SR11 SR12

Table 1—Average values of concrete properties

Table 2-Average values of flexural reinforcement properties

Test	SR2 to SR9	SR10 to SR12
d_b , mm (in.)	16 (0.63)	16 (0.63)
fy, MPa (psi)	$530(76.9)^{*}$	523 (75.9)
<i>fu</i> , MPa (psi)	600 (87.0)	621 (90.1)
$\varepsilon_u, \%$	5.52	10.6
f_u / f_y	1.13	1.19
Type	Cold-worked	Hot-rolled
¥X7°11	(1 (0 00/ 1)	• , •

*Yield strength at 0.2% plastic strain.

Spec. ID	f_c , psi	Ppeak, kip	Δ_{peak} , in.	Δ_u , in.	<i>E</i> bar,peak, με	$P_{bar,peak}$,	$P_{peak} - P_{bar, peak}$	$\frac{P_{bar,peak}}{\sqrt{2}}$
	(standard	_				kip	$f_c A_c$	P_{peak}
	deviation,						%	
	psi)							
S-16	5413 (352)	2818	0.262	0.357	1800	328	80.9	11.6
A-12	6340 (307)	3425	0.308	0.322	2890	109	90.9	3.2
B-12	5885 (345)	2911	0.286	0.320	2070	83.2	84.1	2.9
A-3	5236 (204)	2681	0.319	0.529	3000	113	86.7	4.2
B-3	4763 (295)	2417	0.285	0.561	2650	106	84.5	4.4

Table 3—Test results

Note: 1 psi = 0.006895 MPa; 1 kip = 0.004448 kN; 1 in. = 25.4 mm.

EXAMPLES OF LARGE TABLES:

Mixture ID	Diffusion coefficients, $m^2/sec (ft^2/sec) \times 10^{-12}$					
	Nernst-Plank	Nernst-Einstein	Zhang-Gjorv			
100 TI	2.4 (25.7)	2.7(29.4)	4.7 (50.4)			
100 TIP	1.9 (20.0)	2.1 (22.9)	3.7 (39.4)			
60TI/20C/20F2	2.8 (30.4)	3.2 (34.8)	5.5 (58.6)			
60TI/20F/20F2	2.5 (27.1)	2.9 (31.0)	4.9 (53.2)			
75TI/20F/5SF	0.7 (8.1)	0.9 (9.3)	1.5 (15.9)			
75TI/20F/5M	1.0 (10.9)	1.1 (12.5)	2.0 (21.4)			
60TI/20F2/20G120S	1.4 (14.6)	1.5 (16.7)	2.7 (28.7)			
75TI/20F2/5M	1.3 (14.1)	1.5 (16.1)	2.6 (27.7)			
65TI/30F2/5SF	0.7 (7.9)	0.8 (9.1)	1.5 (15.7)			
67TI/30F2/3SF	1.2 (13.0)	1.4 (14.8)	2.4 (25.6)			
65TIP/35G120S	1.1 (12.2)	1.3 (13.9)	2.2 (23.9)			
75TISM/25C	2.1 (22.5)	2.4 (25.7)	4.1 (44.1)			
75TISM/25F2	1.6 (17.8)	1.9 (20.2)	3.2 (34.8)			
97TISM/3SF	0.6 (6.7)	0.7 (7.5)	1.2 (13.0)			
60TI/30F/10F2	2.5 (26.8)	2.8 (30.5)	4.9 (52.5)			
77TI/20F/3SF	1.5 (16.5)	1.7 (18.7)	3.0 (32.3)			
60TI/30C/10F2	2.7 (28.6)	3.0 (32.7)	5.2 (56.3)			
60TI/30C/10F	2.9 (31.7)	3.4 (36.3)	5.8 (62.2)			
80TI/20C	2.6 (28.7)	3.0 (32.7)	5.2 (56.3)			
62 TI/35G120S/3SF	0.6 (6.9)	0.7 (7.9)	1.3 (13.6)			
60TI/35G120S/5M	0.6 (6.3)	0.7 (7.3)	1.2 (12.5)			
50TI/35G120S/15F	0.7 (7.6)	0.8 (8.7)	1.4 (15.1)			
85TIP/15F	2.1 (22.1)	2.3 (25.2)	4.0 (43.1)			
65TISM/35G120S	1.5 (16.6)	1.8 (18.9)	3.0 (32.5)			

Table 2—Diffusion coefficients from theoretical approaches

	Contribution in total displacement, %								
$P/A_g f_c'$		$\rho = 0.01$	$\rho = 0.02$	$\rho = 0.03$	$\rho = 0.04$				
	Δ_{flex}	69.9	69.6	69.3	69.0				
0	Δ_{slip}	29.2	29.0	28.9	28.8				
	Δ_{shear}	0.9	1.4	1.8	2.2				
	Δ_{flex}	69.6	69.4	69.1	68.9				
0.1	Δ_{slip}	29.1	29.0	28.8	28.7				
	Δ_{shear}	1.3	1.7	2.0	2.4				
	Δ_{flex}	69.4	69.2	69.0	68.8				
0.2	Δ_{slip}	29.0	28.9	28.8	28.7				
	Δ_{shear}	1.6	1.9	2.2	2.5				
	Δ_{flex}	73.1	72.9	73.5	74.0				
0.3	$\Delta_{\!slip}$	24.9	24.9	23.9	23.0				
	Δ_{shear}	2.0	2.2	2.6	3.0				
	Δ_{flex}	80.8	79.6	79.2	78.1				
0.4	$\Delta_{\!slip}$	16.4	17.5	17.6	18.5				
	$\Delta_{\scriptscriptstyle{shear}}$	2.8	2.9	3.2	3.4				
	Δ_{flex}	87.2	85.8	84.4	83.6				
0.5	$\Delta_{\!slip}$	9.3	10.6	11.8	12.3				
	$\Delta_{\scriptscriptstyle{shear}}$	3.5	3.6	3.8	4.1				
	Δ_{flex}	93.0	91.3	89.1	87.6				
0.6	$\Delta_{\!slip}$	2.9	4.4	6.5	7.8				
	Δ_{shear}	4.1	4.3	4.4	4.6				
	Δ_{flex}	95.9	95.5	93.7	91.6				
0.7	Δ_{slip}	0.0	0.0	1.6	3.4				
	Δ_{shear}	4.1	4.5	4.8	5.0				
	Δ_{flex}	96.4	95.9	95.3	94.8				
0.8	Δ_{slip}	0.0	0.0	0.0	0.0				
	Δ_{shear}	3.6	4.1	4.7	5.2				
	Δ_{flex}	97.0	96.4	95.7	95.2				
0.9	Δ_{slip}	0.0	0.0	0.0	0.0				
	Δ_{shear}	3.0	3.6	4.3	4.8				
	Δ_{flex}	97.6	97.0	96.2	95.6				
1	Δ_{slip}	0.0	0.0	0.0	0.0				
	Δ_{shear}	2.4	3.0	3.8	4.4				

Table 2—Contribution of Δ_{flex} , Δ_{slip} , and Δ_{shear} in total displacement, for varying reinforcement ratio

EXAMPLES OF LARGE TABLES COUNTED AS TWO LARGE TABLES:

Beams	ρtfyt/fc′	F.M.	Beams	ρ _t f _{yt} /fc'	F.M.	Beams	$\rho_t f_{yt}/f_c'$	F.M.	Beams	ρ _t f _{yt} /fc'	F.M.
A1-1 ⁸⁾	0.051	U.R.	B15110 ⁹⁾	0.249	O.R.	ID-2R(20)	0.038	U.R.	1-6 ²²⁾	0.031	U.R.
A1-2 ⁸⁾	0.053	U.R.	C205D10(1) ¹⁰⁾	0.029	U.R.	IA-2(2) ¹⁶⁾	0.071	U.R.	1-7 ²²⁾	0.129	U.R.
A1-3 ⁸⁾	0.054	U.R.	C205D20(2) ¹⁰⁾	0.027	U.R.	IC-2(5) ¹⁶⁾	0.038	U.R.	1-8 ²²⁾	0.041	U.R.
A1-4 ⁸⁾	0.051	U.R.	C210DOA(3) ¹⁰⁾	0.049	U.R.	IIA-2(9) ¹⁶⁾	0.071	U.R.	1-9 ²²⁾	0.168	O.R.
B1-1 ⁸⁾	0.052	U.R.	C305DO(5) ¹⁰⁾	0.026	U.R.	IIB-2(10) ¹⁶⁾	0.077	U.R.	1-10 ²²⁾	0.242	O.R.
B1-2 ⁸⁾	0.048	U.R.	$1 - V1/4(1)^{11}$	0.043	U.R.	IIC-2(12) ¹⁶⁾	0.034	U.R.	$1 - 11^{22}$	0.243	O.R.
B1-3 ⁸⁾	0.051	U.R.	2-V1/4(2) ¹¹⁾	0.031	U.R.	IID-2(13) ¹⁶⁾	0.034	U.R.	$1-12^{22}$	0.566	O.R.
B1-4 ⁸⁾	0.052	U.R.	2-V3/8(8) ¹¹⁾	0.032	U.R.	210-19 ¹⁷⁾	0.057	U.R.	3-2 ²²⁾	0.023	U.R.
B1-5 ⁸⁾	0.049	U.R.	1a-V1/4(13) ¹¹⁾	0.036	U.R.	210-40 ¹⁷⁾	0.119	U.R.	3-4 ²²⁾	0.031	U.R.
B2-1 ⁸⁾	0.105	U.R.	1a-V3/8(14) ¹¹⁾	0.043	U.R.	210-59 ¹⁷⁾	0.186	O.R.	$A2^{23}$	0.023	U.R.
C1-3 ⁸⁾	0.048	U.R.	S21-40 ¹²⁾	0.165	O.R.	210-8917)	0.280	O.R.	A3 ²³⁾	0.048	U.R.
C3-1 ⁸⁾	0.081	U.R.	S21-59 ¹²⁾	0.245	O.R.	210-118 ¹⁷⁾	0.372	O.R.	A4 ²³⁾	0.095	U.R.
C3-2 ⁸⁾	0.083	U.R.	S21-89 ¹²⁾	0.337	O.R.	360-1917)	0.035	U.R.	A5 ²³⁾	0.165	U.R.
C3-3 ⁸⁾	0.082	U.R.	S36-40 ¹²⁾	0.119	O.R.	360-8917)	0.175	O.R.	B3 ²³⁾	0.052	U.R.
C4-1 ⁸⁾	0.047	U.R.	S36-59 ¹²⁾	0.153	O.R.	360-11817)	0.232	O.R.	$C2^{23}$	0.024	U.R.
D1-6 ⁸⁾	0.055	U.R.	S36-89 ¹²⁾	0.257	O.R.	570-89 ¹⁷⁾	0.041	U.R.	$E2^{23}$	0.044	U.R.
D1-7 ⁸⁾	0.054	U.R.	B21060 ¹³⁾	0.201	O.R.	B90-041 ¹⁸⁾	0.099	U.R.	$E3^{23}$	0.106	U.R.
D1-8 ⁸⁾	0.055	U.R.	B21074 ¹³⁾	0.304	O.R.	E30-041 ¹⁸⁾	0.024	U.R.	E4 ²³⁾	0.203	U.R.
D2-6 ⁸⁾	0.069	U.R.	B21092 ¹³⁾	0.483	O.R.	G30-041 ¹⁸⁾	0.024	U.R.	E5 ²³⁾	0.254	U.R.
D2-7 ⁸⁾	0.071	U.R.	B21011 ¹³⁾	0.695	O.R.	B-1 ¹⁹⁾	0.021	U.R.	$G3^{23}$	0.073	U.R.
D2-8 ⁸⁾	0.078	U.R.	B36041 ¹³⁾	0.059	U.R.	B-2 ¹⁹⁾	0.140	U.R.	$G4^{23}$	0.107	U.R.
D4-1 ⁸⁾	0.059	U.R.	B36051 ¹³⁾	0.093	U.R.	B-3 ¹⁹⁾	0.018	U.R.	$G5^{23}$	0.183	U.R.
D4-2 ⁸⁾	0.063	U.R.	B36060 ¹³⁾	0.117	U.R.	B-4 ¹⁹⁾	0.016	U.R.	$H2^{23}$)	0.051	U.R.
D4-3 ⁸⁾	0.073	U.R.	B36074 ¹³⁾	0.177	O.R.	B-5 ¹⁹⁾	0.122	U.R.	J3 ²⁴⁾	0.047	U.R.
D5-1 ⁸⁾	0.044	U.R.	B36092 ¹³⁾	0.282	O.R.	B-1 ²⁰⁾	0.029	U.R.	J5 ²⁴⁾	0.133	U.R.
D5-2 ⁸⁾	0.042	U.R.	B36011 ¹³⁾	0.406	O.R.	B-4 ²⁰⁾	0.117	O.R.	T4 ²⁴⁾	0.017	U.R.
D5-3 ⁸⁾	0.045	U.R.	B57041 ¹³⁾	0.037	U.R.	B-5 ²⁰⁾	0.285	O.R.	T6 ²⁴⁾	0.087	U.R.
B30046 ⁹⁾	0.048	U.R.	B57060 ¹³⁾	0.074	U.R.	B-6 ²⁰⁾	0.032	U.R.	T7 ²⁴⁾	0.021	U.R.
B30121 ⁹⁾	0.107	U.R.	B57074 ¹³⁾	0.112	U.R.	B-7 ²⁰⁾	0.098	U.R.	T8 ²⁴⁾	0.018	U.R.
B60030 ⁹⁾	0.044	U.R.	B57092 ¹³⁾	0.178	O.R.	SH-1 ²¹⁾	0.034	U.R.	T9 ²⁴⁾	0.057	U.R.
B60059 ⁹⁾	0.099	U.R.	R8 ¹⁴⁾	0.021	U.R.	SH-2 ²¹⁾	0.068	O.R.	T10 ²⁴⁾	0.013	U.R.
B80019 ⁹⁾	0.050	U.R.	R11 ¹⁴⁾	0.022	U.R.	SH-3 ²¹⁾	0.102	O.R.	T11 ²⁴⁾	0.031	U.R.
B80022 ⁹⁾	0.054	U.R.	R12 ¹⁴⁾	0.017	U.R.	SH-4 ²¹⁾	0.128	O.R.	$T12^{24}$	0.019	U.R.
B80046 ⁹⁾	0.122	U.R.	R14 ¹⁴⁾	0.013	U.R.	2-3 ²²⁾	0.022	U.R.	T13 ²⁴⁾	0.044	U.R.
B80058 ⁹⁾	0.145	U.R.	R15 ¹⁴⁾	0.038	U.R.	2-4 ²²⁾	0.022	U.R.	T14 ²⁴⁾	0.067	U.R.
B80059 ⁹⁾	0.157	U.R.	R16 ¹⁴⁾	0.036	U.R.	2-5 ²²⁾	0.117	U.R.	T15 ²⁴⁾	0.017	U.R.
B80110 ⁹⁾	0.261	O.R.	R24 ¹⁴)	0.018	U.R.	2-6 ²²⁾	0.117	U.R.	T16 ²⁴)	0.012	U.R.
B80121 ⁹⁾	0.321	O.R.	R25 ¹⁴)	0.018	U.R.	$2-7^{22}$	0.044	U.R.	T19 ²⁴)	0.019	U.R.
B120019 ⁹	0.059	U.R.	K28 ¹⁴	0.071	U.R.	2-8-27	0.044	U.R.	T2 424)	0.081	U.R.
B1200509	0.090	U.K.	$C452.0^{15}$	0.027	U.K.	$2-11^{22}$	0.000	U.K.	T2524)	0.017	U.K.
D120039 ²⁷	0.180	O.K.	C453.0 ⁻⁵	0.018	U.K.	$2-15^{22}$	0.091	U.K.	$T_{2}(24)$	0.017	U.K.
D120121*/	0.370	U.K.	C453.3 ¹⁵	0.018	U.K.	$2-13^{22}$	0.001	U.K.	T27 ²⁴	0.048	U.K.
B15019 ²	0.000	U.K.	LA 2D(17)[6]	0.018	U.K.	1-2 / 1 2 ²²)	0.025	U.K.	13/ '	0.070	U.K.
D13022 ²⁷	0.052	U.K.	$IA-2R(1/)^{(0)}$	0.071	U.K.	1-3 /	0.094	U.K.			
D13030'	0.137	U.K.	$1C-2K(19)^{-3}$	0.050	U.K.	1+	0.094	U.K.			

Table 1—Shear failure modes of RC beams

Note: F.M. is failure modes; U.R. is under-reinforced shear failure; and O.R. is over-reinforced shear failure.

	Specimen	C	A _{tr}	f_c' ,	Failure	P_{e} ,	$f_{sc,e}$,	$f_{brg,e}$,	$f_{b,e}$,
	ID	d_b	$ns_{tr}d_b$	MPa (ksi)	mode*	kN (kip)	MPa (ksi)	MPa (ksi)	MPa (ksi)
	S0.75-HO			48.9 (7.09)	FS	2404 (540)	399 (57.9)	NA	NA
	S0.75-HO-1		0	48.9 (7.09)	FS	2835 (637)	407 (59.0)	127 (18.4)	280 (40.6)
	S0.75-HE		0.01.5	48.9 (7.09)	PS+Ec	2587 (582)	337 (48.9)	128 (18.6)	209 (30.3)
	S0.75-HE-1	0.75	0.015	48.9 (7.09)	PS+Ec	2886 (649)	365 (52.9)	131 (19.0)	234 (33.9)
	S0.75-HW		0.044	48.9 (7.09)	PS+En	2791 (627)	465 (67.4)	141 (20.4)	325 (47.1)
	S0.75-HW-1		0.044	48.9 (7.09)	PS+En	2982 (670)	423 (61.3)	133 (19.3)	291 (42.2)
S	S1.25-HO		0	48.9 (7.09)	Ec	2832 (637)	307 (44.5)	111 (16.1)	196 (28.4)
erie	S1.25-HO-1		0	48.9 (7.09)	PS	2920 (656)	322 (46.7)	85 (12.3)	237 (34.4)
)-s(S1.25-HE	1.25	0.015	48.9 (7.09)	PS	2947 (662)	386 (56.0)	130 (18.9)	256 (37.1)
<u>4</u>	S1.25-HE-1	1.23	0.015	48.9 (7.09)	PS+Ec	3115 (700)	415 (60.2)	140 (20.3)	275 (39.9)
22(S1.25-HW		0.044	48.9 (7.09)	PS+En	2852 (641)	423 (61.3)	114 (16.5)	309 (44.8)
D	S1.25-HW-1		0.044	48.9 (7.09)	FS	3090 (695)	457 (66.3)	NA	NA
	S1.50-HO		0	48.9 (7.09)	PS	3183 (716)	325 (47.1)	127 (18.4)	198 (28.7)
	S1.50-HO-1		0	48.9 (7.09)	PS	3126 (703)	315 (45.7)	117 (17.0)	197 (28.6)
	S1.50-HE	1 50	0.015	48.9 (7.09)	PS+Ec	3218 (723)	341 (49.4)	112 (16.2)	228 (33.1)
	S1.50-HE-1	1.50	0.015	48.9 (7.09)	FS	3423 (769)	382 (55.4)	121 (17.5)	262 (38.0)
	S1.50-HW		0.044	48.9 (7.09)	PS+C	3218 (723)	381 (55.2)	121 (17.5)	261 (37.8)
	S1.50-HW-1		0.044	48.9 (7.09)	PS+C	3482 (783)	454 (65.8)	133 (19.3)	321 (46.5)
	S0.75-HO		0	70.2 (10.2)	PS+Ec	3357 (755)	486 (70.5)	125 (18.1)	361 (52.3)
	S0.75-HO-1		0	70.0 (10.2)	PS	3388 (762)	469 (68.0)	148 (21.5)	321 (46.5)
	S0.75-HE	0.75	0.015	70.2 (10.2)	PS+Ec	3348 (753)	487 (70.6)	209 (30.3)	279 (40.5)
	S0.75-HE-1	0.75	0.015	70.0 (10.2)	PS+Ec	3577 (804)	452 (65.5)	151 (21.9)	301 (43.6)
	S0.75-HW		0.044	70.2 (10.2)	Ec+En	3156 (709)	449 (65.1)	133 (19.3)	316 (45.8)
	S0.75-HW-1		0.044	70.0 (10.2)	En	3164 (711)	463 (67.1)	NA	NA
SS	S1.25-HO		0	70.1 (10.2)	FS	3667 (824)	443 (64.2)	139 (20.2)	304 (44.1)
eri	S1.25-HO-1		0	69.9 (10.1)	FS	3853 (866)	496 (71.9)	150 (21.8)	345 (50.0)
0-s	S1.25-HE	1 25	0.015	70.1 (10.2)	FS	3649 (820)	455 (66.0)	144 (20.9)	310 (45.0)
CQ	S1.25-HE-1	1.23 0.015	0.015	70.0 (10.2)	FS	3820 (859)	502 (72.8)	123 (17.8)	379 (55.0)
22	S1.25-HW		0.044	70.1 (10.2)	En	3525 (792)	453 (65.7)	117 (17.0)	336 (48.7)
Д	S1.25-HW-1		0.044	70.0 (10.2)	Ec	3455 (777)	417 (60.5)	122 (17.7)	295 (42.8)
	S1.50-HO		0	68.5 (9.9)	PS+Ec	3920 (881)	424 (61.5)	112 (16.2)	312 (45.2)
	S1.50-HO-1		0	69.9 (10.1)	FS	4227 (950)	504 (73.1)	141 (20.4)	364 (52.8)
	S1.50-HE	1 50	0.015	70.1 (10.2)	PS+C	3847 (865)	514 (74.5)	131 (19.0)	383 (55.5)
	S1.50-HE-1	1.50	0.015	71.4 (10.4)	Ec	4051 (911)	426 (61.8)	125 (18.1)	300 (43.5)
	S1.50-HW		0.044	70.1 (10.2)	Ec	3802 (855)	466 (67.6)	134 (19.4)	332 (48.1)
	S1.50-HW-1		0.044	71.4 (10.4)	Ec	4157 (934)	478 (69.3)	131 (19.0)	347 (50.3)
SS	S0.75-HO		0	54.4 (7.89)	FS+C	3784 (851)	471 (68.3)	121 (17.5)	350 (50.8)
eri	S0.75-HO-1		0	64.5 (9.35)	FS	3577 (804)	435 (63.1)	159 (23.1)	277 (40.2)
0-s	S0.75-HE	0.75	0.008	54.4 (7.89)	PS+Ec	3727 (838)	463 (67.1)	155 (22.5)	309 (44.8)
<u>5</u>	S0.75-HE-1	0.75	0.000	64.7 (9.38)	Ec	3321 (747)	392 (56.8)	114 (16.5)	278 (40.3)
29	S0.75-HW		0.025	55.4 (8.03)	En	3657 (822)	388 (56.3)	132 (19.1)	256 (37.1)
Д	S0.75-HW-1		0.025	64.5 (9.35)	PS+Ec	3414 (767)	455 (66.0)	125 (18.1)	330 (47.9)
S	S0.75-HO		0	71.9 (10.4)	FS	4193 (943)	461 (66.8)	150 (21.8)	311 (45.1)
eri	S0.75-HO-1		0	73.7 (10.7)	PS+En	3776 (849)	436 (63.2)	136 (19.7)	300 (43.5)
0-s	S0.75-HE	0.75	0.008	72.1 (10.5)	FS	3840 (863)	471 (68.3)	172 (24.9)	300 (43.5)
C6	S0.75-HE-1	0.75	0.000	73.7 (10.7)	FS	3713 (835)	451 (65.4)	132 (19.1)	319 (46.3)
29	S0.75-HW		0.025	72.1 (10.5)	Ec	3793 (853)	448 (65.0)	142 (20.6)	306 (44.4)
D	S0.75-HW-1		0.025	73.7 (10.7)	Ec	3799 (854)	449 (65.1)	142 (20.6)	307 (44.5)

Table 1–Test results

 S0.75-HW-1
 0.025
 73.7 (10.7)
 Ec
 3799 (854)
 449 (65.1)
 142 (20.6)
 307 (44

 *C is compression failure; FS is fully splitting failure; PS is partial splitting failure; Ec is premature failure due to eccentricity; and En is premature failure due to end failure.

EXAMPLES OF SMALL FIGURES:

Fig. 1—Variation of flexural and effective stiffness ratios with axial load ratio for different depths of member. (Note: CS denotes cross section size in m; 1 m = 39.37 in.)

a) Beam B18-0a (regular concrete and no stirrups)

b) Beam B18-1a (SFRC with 0.75% volume fraction of Type 1 fibers)

Fig. 2—Cracking pattern in RC versus SFRC beams.

Fig. 3—Comparison of different models of effective stiffness with analytical and experimental estimates for normal strength concrete.

EXAMPLES OF LARGE FIGURES:

Fig. 2—Cracked membrane in pure shear: (a) stresses in concrete and steel; (b) Mohr's circle of stresses and (c) strains; (d) constitutive laws for steel, bond shear stress-slip and concrete; and (e) equivalent tension chord with stirrup reinforcement.

Fig. 3—Results for membrane elements with $f_c' = 50$ MPa and $f_y = 500$ MPa, longitudinal strains $\varepsilon_x = -0.2 \times 10^{-3}$ and 1.2×10^{-3} and reinforcing steel N and H with $f_t/f_y = 1.08$ and 1.2 and $\varepsilon_{su} = 0.05$ and 0.10. (Note: 1 MPa = 145 psi.)

Fig. 1—Average shear stress versus displacement response.

EXAMPLES OF FIGURES COUNTED AS TWO LARGE FIGURES:

Fig. 1—Proposed E_c model prediction bands: (a) NSC, calcareous, unstressed; (b) NSC, lightweight, unstressed; (c) HSC, calcareous, residual; (d) HSC, calcareous, stressed; and (e) HSC, calcareous, unstressed.

d) Distribution of shear strains at peak load

1 kN = 0.225 kip; 1 mm = 0.0394 in.

Fig. 2—Strain distribution for Beam B27-2b.

Fig. 2—Estimated (right) and measured (left, from Oesterle et al. 1976, 1979) lateral load versus deflection behaviors: (a) Wall B1; (b) Wall B3; (c) Wall R1; and (d) Wall R2.