

Concrete Slabs-On-Ground

ONE DAY, 7.5 HOURS

Learn to design, specify, and build quality concrete floors

Program Content:

- Introduction Seminar objectives
- Soil Support Systems
 Design considerations
 Desirable properties
 Post-tensioning—expansive soils
 Vapor transmission control
- Desirable characteristics for slabs-on-ground
 Beyond strength and w/cm
 Optimizing aggregate gradation
 Controlling shrinkage
 Pozzolans and admixtures
- Curling of Joints and Cracks
 Causes
 Effects of design, materials, and construction
 Minimizing or eliminating curling
- Slab System Design
 Thickness design methods
 ACI 360 slab type selection
 Portland Cement Association
 Wire Reinforcing Institute
 Post-Tensioning Institute
 Corps of Engineers

 Shrinkage-compensating concrete

- Slab-on-Ground Reinforcing Why reinforce slabs and pavements? Current quantity calculations Fiber reinforcing
- Joint Detailing and Load Transfer
 Joint types and application
 Round, square, plate, and diamond dowels
 Dowel alignment systems
- Floor Surface Flatness and Levelness
 F-Numbers, straightedge, and other systems
 Random traffic
 Defined traffic ("Superflat" tolerances)
 Construction techniques to achieve flat floors
- Curing and Surface Treatments
 Liquid surface treatments
 Dry shake hardeners
 Moist versus membrane cures
 Special finishes
- Problems
 Recognition, causes, prevention

Who should attend:

Specifiers, architects, contractors, building owners, government agencies, and all others seeking the most up-to-date information on concrete slabs-on-ground.

Instructors:

Patrick J. Harrison, Jerry A. Holland, W. Calvin McCall, Richard E. Smith, and R. Gregory Taylor.

Seminar handouts:

Guide for Concrete Floors and Slab Construction (ACI 302.1R) Design of Slabs-on-Ground (ACI 360R) Course Notes authored by the instructors

