Concrete Slabs-On-Ground

ONE DAY, 7.5 HOURS

Learn to design, specify, and build quality concrete floors

Program Content:

- **Introduction**
 - Seminar objectives

- **Soil Support Systems**
 - Design considerations
 - Desirable properties
 - Post-tensioning—expansive soils
 - Vapor transmission control

- **Concrete Materials Analysis**
 - Desirable characteristics for slabs-on-ground
 - Beyond strength and \(w/cm \)
 - Optimizing aggregate gradation
 - Controlling shrinkage
 - Pozzolans and admixtures

- **Curling of Joints and Cracks**
 - Causes
 - Effects of design, materials, and construction
 - Minimizing or eliminating curling

- **Slab System Design**
 - Thickness design methods
 - ACI 360 slab type selection
 - Portland Cement Association
 - Wire Reinforcing Institute
 - Post-Tensioning Institute
 - Corps of Engineers
 - Shrinkage-compensating concrete

- **Slab-on-Ground Reinforcing**
 - Why reinforce slabs and pavements?
 - Current quantity calculations
 - Fiber reinforcing

- **Joint Detailing and Load Transfer**
 - Joint types and application
 - Round, square, plate, and diamond dowels
 - Dowel alignment systems

- **Floor Surface Flatness and Levelness**
 - F-Numbers, straightedge, and other systems
 - Random traffic
 - Defined traffic (“Superflat” tolerances)
 - Construction techniques to achieve flat floors

- **Curing and Surface Treatments**
 - Liquid surface treatments
 - Dry shake hardeners
 - Moist versus membrane cures
 - Special finishes

- **Problems**
 - Recognition, causes, prevention

Who should attend:
Specifiers, architects, contractors, building owners, government agencies, and all others seeking the most up-to-date information on concrete slabs-on-ground.

Instructors:

Seminar handouts:
- Guide for Concrete Floors and Slab Construction (ACI 302.1R)
- Design of Slabs-on-Ground (ACI 360R)
- Course Notes authored by the instructors

+1.248.848.3754 www.concreteseminars.com