What About Adhesive Anchors?
Part 2(B)

ACI Spring 2010 Xtreme Concrete Convention
March 21 - 25, Chicago, IL

INTRODUCTION

- Anchoring systems for concrete are comprised of: cast-in-place, and post-installed anchors.
- Post-installed anchors:
 - Mechanical systems (expansion and undercut)
 - Bonded (adhesive and grouted) systems.
 - Load transfer is ensured by bond stresses between the anchor, adhesive and concrete along embedment length.
 - Adhesive anchors can be a threaded rod or deformed steel rebar.
 - Different products are used to install adhesive anchors including polymers (epoxies, polyesters, or vinylesters).

INTRODUCTION

- Tu and Kruger, (1996) reported that water is a harmful factor for epoxy adhesives and noted severe bond strength deterioration of joints subjected to water immersion.
- Higgins and Klingner, (1998) tested the effect of UV exposure and acid rain wetting and drying on the bond strength of a single adhesive anchor, and found no significant impact on the tensile behavior of the anchor to such exposure.
- Higgins and Klingner, (1998) tested the effect of UV exposure and acid rain wetting and drying on the bond strength of a single adhesive anchor, and found no significant impact on the tensile behavior of the anchor to such exposure.

INTRODUCTION

- Cook and Konz, (2001) experimentally investigated the sensitivity of 20 adhesive products to various installation and service conditions through confined tension tests. Findings showed some general trends for products with similarities in chemical composition. However, responses to various conditions and factors varied significantly making it unreliable to make prediction based on chemical formulation.
- Meline et al., (2006) evaluated the creep performance of epoxy adhesive anchor systems with epoxy-coated steel rebars at elevated temperature on three types of adhesives. Two out three failed to satisfy the ICBO-AC-058 requirements.
INTRODUCTION

On July 10th, 2006, in Interstate 90 (I-90) connector tunnel in Boston, Massachusetts. As the car approached the end of the tunnel, a section of the suspended concrete ceiling detached from the tunnel roof and fell onto the vehicle. 26 tons of concrete fell onto the vehicle and the roadway.

The National Transportation Safety Board determined that the probable cause of the collapse was the use of an epoxy anchor adhesive with poor creep resistance.

INTRODUCTION

Limited research on the long-term performance of adhesive anchors was reported in the literature.

Prompted by concerns with long term durability of adhesive anchors in view of the US experience, and a desire to develop effective material prequalification requirements.

The University of Waterloo, in collaboration with the Ministry of Transportation of Ontario, conducted this research study to investigate the long-term creep behavior of adhesive anchors under sustained tensile loads.

OBJECTIVES OF STUDY

The main objective of this research study is to evaluate the performance of epoxy and acrylic-based adhesive anchor systems.

The study focuses on the creep performance of these anchor systems under sustained tensile loads combined with different exposure condition, and on the tensile capacity after exposure to different environmental conditions.

EXPERIMENTAL PROGRAM

<table>
<thead>
<tr>
<th>PHASE</th>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I: Static testing at room temperature</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Phase II: Creep test at room temperature</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Phase III: Creep test under moisture exposure</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Phase IV: Creep test under freeze-thaw cycles</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total number of specimens</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Test specimens
- Cylindrical concrete block 12 inch in diameter and 8 inch in height.
- Anchors are 15 M deformed steel reinforcing bar, embedded to a depth of 8d, (5 inches)
EXPERIMENTAL PROGRAM Cont.
Anchor installation
Three adhesive materials were used for anchors installation:
- **Type A** - Fast setting two component methyl methacrylate
- **Type B** - Fast setting two part epoxy adhesive
- **Type C** - Standard set two part epoxy adhesive
 witnessed by a representative for each manufacturer.

EXPERIMENTAL PROGRAM Cont.
Creep Test Setup - ambient temperature & moisture exposure
Specimens are tested in a steel frame that is designed to magnify a dead load through a series of lever arms.
Axial tension load on the anchors was approximately 32 kN (40% of the yield strength of the anchor).
All steel frames were pre-calibrated.

EXPERIMENTAL PROGRAM Cont.
Creep Testing Setup for Freeze/Thaw cycling
The second testing frame relied on compression coil springs and rod assembly to apply the load.
The coil springs used had a capacity of 40kN at 1.5 inch of compression displacement.

EXPERIMENTAL PROGRAM Cont.
Static Pullout Testing Setup

STATIC PULLOUT RESULTS
- Specimens with all 3 adhesives behaved in a similar manner up to yielding of the anchor.
- Specimens with Type B and Type C adhesives exhibited stronger ultimate capacities, forcing the anchor to fail by rupture prior to bond failure.
- All three specimens with Type A adhesive failed by bond.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Ultimate Load (kN)</th>
<th>Failure Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-R-1</td>
<td>132</td>
<td>Yielding of the anchor followed by bond failure</td>
</tr>
<tr>
<td>A-R-2</td>
<td>122</td>
<td>Yielding of the anchor followed by bond failure</td>
</tr>
<tr>
<td>A-R-3</td>
<td>108</td>
<td>Yielding of the anchor followed by bond failure</td>
</tr>
<tr>
<td>B-R-1</td>
<td>133</td>
<td>Yielding of the anchor followed by anchor rupture</td>
</tr>
<tr>
<td>B-R-2</td>
<td>133</td>
<td>Yielding of the anchor followed by anchor rupture</td>
</tr>
<tr>
<td>B-R-3</td>
<td>134</td>
<td>Yielding of the anchor followed by anchor rupture</td>
</tr>
<tr>
<td>C-R-1</td>
<td>129</td>
<td>Yielding of the anchor followed by anchor rupture</td>
</tr>
<tr>
<td>C-R-2</td>
<td>133</td>
<td>Yielding of the anchor followed by anchor rupture</td>
</tr>
<tr>
<td>C-R-3</td>
<td>133</td>
<td>Yielding of the anchor followed by anchor rupture</td>
</tr>
</tbody>
</table>
CREEP TEST RESULTS

- The creep tests were carried out under a sustained load of 32kN or 40% of the yield strength of the anchor for a minimum period of 90 days.

- Specimens with each type of adhesive were subjected to three types of exposure:
 1. Ambient temperature
 2. Moisture exposure (by ponding)
 3. Freeze/thaw cycles with the presence of moisture (16hrs freezing @ -20C, 8hrs thawing @ +20C)

CREEP TEST RESULTS, Cont.
Specimens with Type A adhesive

Environmental exposure caused significant variation in the measured creep displacement:

- Ambient temperature - consistent response with decreasing creep displacement rate over time.
- Moisture exposure - significant increase in initial elastic displacement and in the overall creep displacement.
- Freeze/thaw cycling - increased creep displacement and an increasing rate of creep displacement over time.

CREEP TEST RESULTS, Cont.
Specimens with Type B adhesive

Environmental exposure led to inconsistent behavior significant variation in the measured creep displacement:

- Moisture exposure - higher average overall creep displacement with an increasing rate with time, with a widely variable response within the three specimens.
- Freeze/thaw cycles in presence of moisture – slightly higher overall average creep displacement.

CREEP TEST RESULTS, Cont.
Specimens with Type B adhesive

Environmental exposure caused insignificant variation in the measured creep displacement:

- Ambient temperature - Insignificant creep displacement was recorded.
- Moisture exposure - Slight increase in displacement.
- Freeze/thaw cycles in the presence of moisture- Significant variation in response, along with substantial increase in creep displacement.
CREEP TEST RESULTS, Cont.
Specimens with Type C adhesive

Overall comparison

CONCLUSION
- All adhesive types had lower creep displacements under ambient exposure than moisture or freeze-thaw exposure.
- Types A and B showed a significant increase in creep displacement when exposed to moisture.
- Freeze/thaw cycles did not have much of an effect on Type B, slightly affected Type C but significantly affected creep response for Type A.
- Type C (Standard set two part epoxy) adhesive appears to be superior in terms of creep behavior over both the fast setting Types A and B adhesives.
- Types B and C adhesives exhibit higher capacity compared to the acrylic based Type A.

ACKNOWLEDGMENT
This research was funded by the Ministry of Transportation Ontario through a research contract under the Highway Infrastructure Innovations Funding Program (HIIFP).

Related Documents

Anchorage to Concrete
- 355.2-07: Qualification of Post-Installed Mechanical Anchors in Concrete & Commentary
- 349.2R-07: Guide to the Concrete Capacity Design (CCD) Method - Embedment Design Examples
- 503.5R-92: Guide for the Selection of Polymer Adhesives in Concrete (Reapproved 2003)
- SP-103: Anchorage to Concrete
- SP-130: Anchors in Concrete--Design and Behavior
- 318-08: Building Code Requirements for Structural Concrete and Commentary