Evaluation and Minimization of Bruising (Microcracking) in Concrete Repair

Keywords: bond strength; bruising; microcracking; pull-off test; repair, surface preparation.

Introduction
Bruising (microcracking) induced in a concrete substrate during the concrete removal or surface preparation process prior to repair is detrimental to the bond between the repair material and the substrate. Preventing or minimizing bruising and its effect on bond is an important requirement for a successful repair.

Questions
What is “bruising,” how is it evaluated, and how can it be minimized?

Answer
Concrete repair projects commonly involve the removal of unsound concrete and replacement with new material. The concrete removal process can damage the substrate surface, resulting in varying degrees of microcracks and fractures, commonly referred to as “bruising” (Fig. 1). A bruised surface is a surface layer weakened by interconnected microcracks.

Concrete can be removed using a variety of methods such as chipping hammers, milling, abrasive blasting, and hydrodemolition. Removal of unsound and sound concrete subjects the concrete substrate to a wide range of impact and dynamic loads, and the resulting bruising will depend on the method used and the quality of the concrete. The depth of the bruised layer varies, but is usually superficial (typical depth of the order of 1/8 in. [3 mm]). There are no criteria yet for the degree of bruising that reduces service life.

Pull-off testing of the repair system (surface repair and substrate) can be conducted to determine the bond strength. Bruising translates into a weakened concrete surface layer and will result in lower recorded pull-off strengths with failures occurring predominantly in the substrate. The incidence, severity, and depth of bruising can be identified by microscopic examination (such as petrographic examination using ASTM C856 methods) of the concrete. Microscopic examination can further be used to assess remedial actions taken to eliminate bruising of the concrete. To identify bruising, a polished surface needs to be magnified 20 to 100 times, depending on the width of the cracks (Fig. 1).

Bruising can be minimized by selecting the appropriate concrete removal equipment and techniques for the given repair application, and avoiding whenever possible those that are known to induce significant micro-

![Fig. 1—Optical microscope images of concrete core cross sections exhibiting bruising below the surface.](image-url)
cracking. The latter techniques include scabblers, scarifiers, bush hammers, or pneumatic hammers, especially those equipped with wide chisel tools. Bruising problems can be prevented by using methods such as abrasive shotblasting, water-blasting, or hydrodemolition.

Where the use of more damaging methods is required to increase production rate or reduce costs, the damage can be mitigated somewhat by abrasive shot- or water-blasting as a final preparation step. If bruising is detected, the depth and extent of the damage to the substrate should be assessed and mitigated. In some cases, the damage may go beyond surface bruising and can extend into the concrete. Replacing the commonly used sand in abrasive blasting with alternative materials such as sintered slag, flint silicon carbide, or aluminum oxide can reduce damage. The use of lightweight pneumatic-chipping hammers equipped with sharp, pointed tools can also limit the extent of bruising, but may make concrete removal more time consuming.

References
1. ACI Committee 503, “Use of Epoxy Compounds with Concrete (ACI 503R-93),” American Concrete Institute, Farmington Hills, MI, 1993, 28 pp.

Referenced Standards and Reports
ACI TechNotes are intended for reference for the design and construction of concrete structures. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and who will accept responsibility for the application of the information it contains. The American Concrete Institute disclaims any and all responsibility for the accuracy of the content and shall not be liable for any loss or damage arising therefrom. Reference to this document shall not be made in contract documents.

ACI 364.7T-02 was adopted and published April 2002.

Copyright © 2002, American Concrete Institute.

All rights reserved including the rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.