Chapter 1—General
1.1—Scope of ACI 318
1.2—General
1.3—Purpose
1.4—Applicability
1.5—Interpretation
1.6—Building official
1.7—Licensed design professional
1.8—Construction documents and design records
1.9—Testing and inspection
1.10—Approval of special systems of design, construction, or alternative construction materials

Chapter 2—Notation and Terminology
2.1—Scope
2.2—Notation
2.3—Terminology

Chapter 3—Referenced Standards
3.1—Scope
3.2—Referenced standards
3.2.1—American Association of State Highway and Transportation Officials (AASHTO)
3.2.2—American Concrete Institute (ACI)
3.2.3—American Society of Civil Engineers (ASCE)/Structural Engineering Institute (SEI)
3.2.4—ASTM International
3.2.5—American Welding Society (AWS)

Chapter 4—Structural System Requirements
4.1—Scope
4.2—Materials
4.3—Design loads
4.4—Structural systems and load paths
4.4.6—Seismic-force-resisting system
4.4.7—Diaphragms
4.5—Structural analysis
4.6—Strength
4.7—Serviceability
4.8—Durability
4.9—Sustainability
4.10—Structural integrity
4.10.1—General
4.10.2—Minimum requirements for structural integrity
4.11—Fire resistance
4.12—Requirements for specific types of construction
4.12.1—Precast concrete systems
4.12.2—Prestressed concrete systems
4.12.3—Composite concrete flexural members
4.12.4—Composite steel and concrete construction
4.13—Construction and inspection
4.14—Strength evaluation of existing structures

Chapter 5—Loads
5.1—Scope
5.2—General
5.3—Load factors and combinations

Chapter 6—Structural Analysis
6.1—Scope
6.2—General
6.3—Modeling assumptions
6.3.1—General
6.3.2—T-beam geometry
6.4—Arrangement of live load
6.5—Simplified method of analysis for nonprestressed continuous beams and one-way slabs
6.6—First-order analysis
6.6.1—General
6.6.2—Modeling of members and structural systems
6.6.3—Section properties
6.6.3.1—Factored load analysis
6.6.3.2—Service load analysis
6.6.4—Slenderness effects, moment magnification method
6.6.4.4—Stability properties
6.6.4.5—Moment magnification method: nonsway frames
6.6.4.6—Moment magnification method: sway frames
6.6.5—Redistribution of moments in continuous flexural members
6.7—Elastic second-order analysis
6.7.1—General
6.7.2—Section properties
6.8—Inelastic second-order analysis
6.8.1—General
6.9—Acceptability of finite element analysis
Chapter 7—One-Way Slabs
 7.1—Scope
 7.2—General
 7.2.2—Materials
 7.2.3—Connection to other members
 7.3—Design limits
 7.3.1—Minimum slab thickness
 7.3.2—Calculated deflection limits
 7.3.3—Reinforcement strain limit in nonprestressed slabs
 7.3.4—Stress limits in prestressed slabs
 7.4—Required strength
 7.4.1—General
 7.4.2—Factored moment
 7.4.3—Factored shear
 7.5—Design strength
 7.5.1—General
 7.5.2—Moment
 7.5.3—Shear
 7.6—Reinforcement limits
 7.6.1—Minimum flexural reinforcement in nonprestressed slabs
 7.6.2—Minimum flexural reinforcement in prestressed slabs
 7.6.3—Minimum shear reinforcement
 7.6.4—Minimum shrinkage and temperature reinforcement
 7.7—Reinforcement detailing
 7.7.1—General
 7.7.2—Reinforcement spacing
 7.7.3—Flexural reinforcement in nonprestressed slabs
 7.7.3.8—Termination of reinforcement
 7.7.4—Flexural reinforcement in prestressed slabs
 7.7.4.3—Termination of prestressed reinforcement
 7.7.4.4—Termination of deformed reinforcement in slabs with unbonded tendons
 7.7.5—Shear reinforcement
 7.7.6—Shrinkage and temperature reinforcement
 7.7.6.2—Nonprestressed reinforcement
 7.7.6.3—Prestressed reinforcement

Chapter 8—Two-Way Slabs
 8.1—Scope
 8.2—General
 8.2.6—Materials
 8.2.7—Connections to other members
 8.3—Design limits
 8.3.1—Minimum slab thickness
 8.3.2—Calculated deflection limits
 8.3.3—Reinforcement strain limit in nonprestressed slabs
 8.3.4—Stress limits in prestressed slabs
 8.4—Required strength
 8.4.1—General
 8.4.2—Factored moment
 8.4.2.3—Factored slab moment resisted by the column
 8.4.3—Factored one-way shear
 8.4.4—Factored two-way shear
 8.4.4.1—Critical section
 8.4.4.2—Factored two-way shear stress due to shear and factored slab moment resisted by the column
 8.5—Design strength
 8.5.1—General
 8.5.2—Moment
 8.5.3—Shear
 8.5.4—Openings in slab systems
 8.6—Reinforcement limits
 8.6.1—Minimum flexural reinforcement in nonprestressed slabs
 8.6.2—Minimum flexural reinforcement in prestressed slabs
 8.7—Reinforcement detailing
 8.7.1—General
 8.7.2—Flexural reinforcement spacing
 8.7.3—Corner restraint in slabs
 8.7.4—Flexural reinforcement in nonprestressed slabs
 8.7.4.1—Termination of reinforcement
 8.7.4.2—Structural integrity
 8.7.5—Flexural reinforcement in prestressed slabs
 8.7.5.4—Termination of prestressed reinforcement
 8.7.5.5—Termination of deformed reinforcement in slabs with unbonded tendons
 8.7.5.6—Structural integrity
 8.7.6—Shear reinforcement—stirrups
 8.7.7—Shear reinforcement—headed studs
 8.8—Nonprestressed two-way joist systems
 8.8.1—General
 8.8.2—Joist systems with structural fillers
 8.8.3—Joist systems with other fillers
 8.9—Lift-slab construction
 8.10—Direct design method
 8.10.1—General
 8.10.2—Limitation for use of direct design method
8.10.3—Total factored static moment for a span
8.10.4—Distribution of total factored static moment
8.10.5—Factored moments in column strips
 8.10.5.7—Factored moments in beams
8.10.6—Factored moments in middle strips
8.10.7—Factored moments in columns and walls
8.10.8—Factored shear in slab systems with beams
8.11—Equivalent frame method
 8.11.1—General
 8.11.2—Equivalent frames
 8.11.3—Slab beams
 8.11.4—Columns
 8.11.5—Torsional members
 8.11.6—Factored moments

Chapter 9—Beams
9.1—Scope
9.2—General
 9.2.1—Materials
 9.2.2—Connection to other members
 9.2.3—Stability
 9.2.4—T-Beam construction
9.3—Design limits
 9.3.1—Minimum beam depth
 9.3.2—Calculated deflection limits
 9.3.3—Reinforcement strain limit in nonprestressed beams
 9.3.4—Stress limits in prestressed beams
9.4—Required strength
 9.4.1—General
 9.4.2—Factored moment
 9.4.3—Factored shear
 9.4.4—Factored torsion
9.5—Design strength
 9.5.1—General
 9.5.2—Moment
 9.5.3—Shear
 9.5.4—Torsion
9.6—Reinforcement levels
 9.6.1—Minimum flexural reinforcement in nonprestressed beams
 9.6.2—Minimum flexural reinforcement in prestressed beams
 9.6.3—Minimum shear reinforcement
 9.6.4—Minimum torsional reinforcement
9.7—Reinforcement detailing
 9.7.1—General
 9.7.2—Reinforcement spacing

Chapter 10—Columns
10.1—Scope
10.2—General
 10.2.1—Materials
 10.2.2—Composite columns
 10.2.3—Connection to other members
10.3—Design limits
 10.3.1—Dimensional limits
10.4—Required strength
 10.4.1—General
 10.4.2—Factored axial force and moment
10.5—Design strength
 10.5.1—General
 10.5.2—Axial force and moment
 10.5.3—Shear
 10.5.4—Torsion
10.6—Reinforcement Limits
 10.6.1—Minimum and maximum longitudinal reinforcement
 10.6.2—Minimum shear reinforcement
10.7—Reinforcement detailing
 10.7.1—General
 10.7.2—Reinforcement spacing
 10.7.3—Longitudinal reinforcement
 10.7.4—Offset bent longitudinal
Chapter 11—Walls
11.1—Scope
11.2—General
 11.2.1—Materials
 11.2.2—Connections to other members
 11.2.3—Load distribution
 11.2.4—Intersecting elements
11.3—Design limits
 11.3.1—Minimum wall thickness
11.4—Required strength
 11.4.1—General
 11.4.2—Factored axial force and moment
 11.4.3—Factored shear
11.5—Design strength
 11.5.1—General
 11.5.2—Axial load and in-plane or out-of-plane flexure
 11.5.3—Axial load and out-of-plane flexure—simplified design method
 11.5.4—In-plane shear
 11.5.5—Out-of-plane shear
11.6—Reinforcement limits
11.7—Reinforcement detailing
 11.7.1—General
 11.7.2—Spacing of longitudinal reinforcement
 11.7.3—Spacing of transverse reinforcement
 11.7.4—Lateral support of longitudinal reinforcement
 11.7.5—Reinforcement around openings
11.8—Alternative method for out-of-plane slender wall analysis
 11.8.1—General
 11.8.2—Modeling
 11.8.3—Factored moment
 11.8.4—Out-of-plane deflection—service loads

Chapter 12—Diaphragms
12.1—Scope
12.2—General
 12.2.2—Materials
12.3—Design limits
 12.3.1—Minimum diaphragm thickness
12.4—Required strength
 12.4.1—General
 12.4.2—Diaphragm modeling and analysis
12.5—Design strength
 12.5.1—General
 12.5.2—Moment and axial force
 12.5.3—Shear
 12.5.4—Collectors
12.6—Reinforcement limits
12.7—Reinforcement detailing
 12.7.1—General
 12.7.2—Reinforcement spacing
 12.7.3—Diaphragm and collector reinforcement

Chapter 13—Foundations
13.1—Scope
13.2—General
 13.2.1—Materials
 13.2.2—Connection to other members
 13.2.3—Earthquake effects
 13.2.4—Slabs-on-ground
 13.2.5—Plain concrete
 13.2.6—Design criteria
 13.2.7—Critical sections for shallow foundations and pile caps
 13.2.8—Development of reinforcement in shallow foundations and pile caps
13.3—Shallow Foundations
 13.3.1—General
 13.3.2—One-way shallow foundations
 13.3.3—Two-way isolated footings
 13.3.4—Two-way combined footings and mat foundations
13.4—Deep Foundations
 13.4.1—General
 13.4.2—Pile caps
 13.4.3—Deep foundation members

Chapter 14—Plain Concrete
14.1—Scope
14.2—General
 14.2.1—Materials
 14.2.2—Connections to other members
 14.2.3—Precast
14.3—Design Limits
 14.3.1—Bearing walls
14.3.2—Footings
14.3.3—Pedestals
14.3.4—Contraction and isolation joints
14.4—Required Strength
14.4.1—General
14.4.2—Walls
14.4.3—Footings
14.4.3.1—General
14.4.3.2—Factored moment
14.4.3.3—Factored one-way shear
14.4.3.4—Factored two-way shear
14.5—Design Strength
14.5.1—General
14.5.2—Flexure
14.5.3—Axial compression
14.5.4—Flexure and axial compression
14.5.5—Shear
14.5.6—Bearing
14.6—Reinforcement Detailing

Chapter 15—Beam-Column and Slab-Column Joints
15.1—Scope
15.2—General
15.3—Transfer of column axial force through the floor system
15.4—Detailing of joints

Chapter 16—Connections Between Members
16.1—Scope
16.2—Connections of precast members
16.2.1—General
16.2.2—Required strength
16.2.3—Design strength
16.2.4—Minimum connection strength and integrity tie requirements
16.2.5—Integrity tie requirements for precast concrete bearing wall structures three stories or more in height
16.2.6—Minimum dimensions at bearing connections
16.3—Connections to foundations
16.3.1—General
16.3.2—Required strength
16.3.3—Design strength
16.3.4—Minimum reinforcement for connections between cast-in-place members and foundation
16.3.5—Details for connections between cast-in-place members and foundation
16.3.6—Details for connections between precast members and foundation
16.4—Horizontal shear transfer in composite concrete flexural members
16.4.1—General
16.4.2—Required strength
16.4.3—Design strength
16.4.4—Nominal horizontal shear strength
16.4.5—Alternative method for calculating design horizontal shear strength
16.4.6—Minimum reinforcement for horizontal shear transfer
16.4.7—Reinforcement detailing for horizontal shear transfer
16.5—Brackets and corbels
16.5.1—General
16.5.2—Dimensional limits
16.5.3—Required strength
16.5.4—Design strength
16.5.5—Reinforcement limits
16.5.6—Reinforcement detailing

Chapter 17—Anchoring to Concrete
17.1—Scope
17.2—General
17.2.3—Seismic design
17.2.3.4—Requirements for tensile loading
17.2.3.5—Requirements for shear loading
17.3—General requirements for strength of anchors
17.4—Design requirements for tensile loading
17.4.1—Steel strength of anchor in tension
17.4.2—Concrete breakout strength of anchor in tension
17.4.3—Pullout strength of cast-in, post-installed expansion and undercut anchors in tension
17.4.4—Concrete side-face blowout strength of a headed anchor in tension
17.4.5—Bond strength of adhesive anchor in tension
17.5—Design requirements for shear loading
17.5.1—Steel strength of anchor in shear
17.5.2—Concrete breakout strength of anchor in shear
17.5.3—Concrete pryout strength of anchor in shear
17.6—Interaction of tensile and shear forces
17.7—Required edge distances, spacings, and thicknesses to preclude splitting failure
17.8—Installation and inspection of anchors

Chapter 18—Earthquake-Resistant Structures
18.1—Scope
18.2—General
18.2.1—Structural systems
18.2.2—Analysis and proportioning of structural members
18.2.3—Anchoring to concrete
18.2.4—Strength reduction factors
18.2.5—Concrete in special moment frames and special structural walls
18.2.6—Reinforcement in special moment frames and special structural walls
18.2.7—Mechanical splices in special moment frames and special structural walls
18.2.8—Welded splices in special moment frames and special structural walls
18.3—Ordinary moment frames
18.3.1—Scope
18.4—Intermediate moment frames
18.4.1—Scope
18.4.2—Beams
18.4.3—Columns
18.4.4—Joints
18.4.5—Two-way slabs without beams
18.5—Intermediate precast structural walls
18.5.1—Scope
18.5.2—General
18.6—Beams of special moment frames
18.6.1—Scope
18.6.2—Dimensional Limits
18.6.3—Longitudinal reinforcement
18.6.4—Transverse reinforcement
18.6.5—Shear strength
18.7—Columns of special moment frames
18.7.1—Scope
18.7.2—Dimensional limits
18.7.3—Minimum flexural strength of columns
18.7.4—Longitudinal reinforcement
18.7.5—Transverse reinforcement
18.7.6—Shear strength
18.7.6.1—Design forces
18.7.6.2—Transverse reinforcement
18.8—Joints of special moment frames
18.8.1—Scope
18.8.2—General
18.8.3—Transverse reinforcement
18.8.4—Shear strength
18.8.5—Development length of bars in tension
18.9—Special moment frames constructed using precast concrete
18.9.1—Scope
18.9.2—General
18.10—Special structural walls
18.10.1—Scope
18.10.2—Reinforcement
18.10.3—Design forces
18.10.4—Shear strength
18.10.5—Design for flexure and axial force
18.10.6—Boundary elements of special structural walls
18.10.7—Coupling beams
18.10.8—Wall piers
18.10.9—Construction joints
18.10.10—Discontinuous walls
18.11—Special structural walls constructed using precast concrete
18.11.1—Scope
18.11.2—General
18.12—Diaphragms and trusses
18.12.1—Scope
18.12.2—Design forces
18.12.3—Seismic load path
18.12.4—Cast-in-place composite topping slab diaphragms
18.12.5—Cast-in-place noncomposite topping slab diaphragms
18.12.6—Minimum thickness of diaphragms
18.12.7—Reinforcement
18.12.8—Flexural strength
18.12.9—Shear strength
18.12.10—Construction joints
18.12.11—Structural trusses
18.13—Foundations
18.13.1—Scope
18.13.2—Footings, foundation mats, and pile caps
18.13.3—Grade beams and slabs-on-ground
18.13.4—Piles, piers, and caissons
18.14—Members not designated as part of the seismic-force-resisting system
18.14.1—Scope
18.14.2—Design actions
18.14.3—Cast-in-place beams, columns, and joints
18.14.4—Precast beams and columns
18.14.5—Slab-column connections
18.14.6—Wall piers

Chapter 19—Concrete: Design and Durability Requirements
19.1—Scope
19.2—Concrete design properties
19.2.1—Specified compressive strength
19.2.2—Modulus of elasticity
19.2.3—Modulus of rupture
19.2.4—Lightweight concrete
19.3—Concrete durability requirements
Chapter 20—Steel Reinforcement Properties, Durability, and Embedments

20.1—Scope
20.2—Nonprestressed bars and wires
 20.2.1—Material properties
 20.2.2—Design properties
20.3—Prestressing strands, wires, and bars
 20.3.1—Material properties
 20.3.2—Design properties
 20.3.2.1—Material properties
 20.3.2.2—Stress in bonded prestressed reinforcement at nominal flexural strength, \(f_{m} \)
 20.3.2.3—Stress in unbonded prestressed reinforcement at nominal flexural strength, \(f_{m} \)
 20.3.2.4—Permissible tensile stresses in prestressed reinforcement
 20.3.2.5—Tensile stresses in prestressed reinforcement
 20.3.2.6—Prestress losses
20.4—Structural steel, pipe, and tubing for composite columns
 20.4.1—Material properties
 20.4.2—Design properties
20.5—Headed shear stud reinforcement
20.6—Embedments
 20.6.1—Specified concrete cover
 20.6.1.1—Specified concrete cover requirements
 20.6.1.2—Specified concrete cover requirements for corrosion environments
 20.6.2—Nonprestressed coated reinforcement
 20.6.3—Corrosion protection for unbonded prestressing reinforcement
 20.7.1—Corrosion protection for grouted tendons
 20.7.2—Corrosion protection for post-tensioning anchorages, couplers, and end fittings
 20.7.3—Corrosion protection for external post-tensioning
20.7—Embedments

Chapter 21—Strength Reduction Factors

21.1—Scope
21.2—Strength reduction factors for structural concrete members and connections

Chapter 22—Sectional Strength

22.1—Scope
22.2—Design assumptions for moment and axial strength
 22.2.1—Equilibrium and strain compatibility
 22.2.2—Design assumptions for concrete
 22.2.3—Design assumptions for nonprestressed reinforcement
 22.2.4—Design assumptions for prestressing reinforcement
22.3—Flexural strength
 22.3.1—General
 22.3.2—Prestressed concrete members
 22.3.3—Composite concrete members
22.4—Axial strength or combined flexural and axial strength
 22.4.1—General
 22.4.2—Maximum axial strength
 22.4.3—Maximum axial tensile strength
22.5—One-way shear strength
 22.5.1—General
 22.5.2—Geometric assumptions
 22.5.3—Limiting material strengths
 22.5.4—Composite concrete members
 22.5.5—\(V_{c} \) for nonprestressed members without axial force
 22.5.6—\(V_{c} \) for nonprestressed members with axial compression
 22.5.7—\(V_{c} \) for nonprestressed members with significant axial tension
 22.5.8—\(V_{c} \) for prestressed members
 22.5.9—\(V_{c} \) for pretensioned members in regions of reduced prestress force
 22.5.10—One-way shear reinforcement
22.6—Two-way shear strength
 22.6.1—General
 22.6.2—Effective depth
 22.6.3—Limiting material strengths
 22.6.4—Critical sections for two-way members
 22.6.5—Two-way shear strength provided by concrete
 22.6.6—Maximum shear for two-way members with shear reinforcement
 22.6.7—Two-way shear strength provided by single- or multiple-leg stirrups
 22.6.8—Two-way shear strength provided by headed shear stud reinforcement
 22.6.9—Design provisions for two-way members with shearheads
22.7—Torsional strength
22.7.1—General
22.7.2—Limiting material strengths
22.7.3—Factored design torsion
22.7.4—Threshold torsion
22.7.5—Cracking torsion
22.7.6—Torsional strength
22.7.7—Cross-sectional limits

22.8—Bearing
22.8.1—General
22.8.2—Required strength
22.8.3—Design strength

22.9—Shear friction
22.9.1—General
22.9.2—Required strength
22.9.3—Design strength
22.9.4—Nominal shear strength
22.9.5—Detailing for shear-friction reinforcement

Chapter 23—Strut-and-Tie Models
23.1—Scope
23.2—General
23.3—Design strength
23.4—Strength of struts
23.5—Reinforcement crossing bottle-shaped struts
23.6—Strut reinforcement detailing
23.7—Strength of ties
23.8—Tie reinforcement detailing
23.9—Strength of nodal zones

Chapter 24—Serviceability Requirements
24.1—Scope
24.2—Deflections due to service-level gravity loads
24.2.3—Calculation of immediate deflections
24.2.4—Calculation of time-dependent deflections
24.2.4.1—Nonprestressed members
24.2.4.2—Prestressed members
24.2.5—Calculation of deflections of composite concrete construction
24.3—Distribution of flexural reinforcement in one-way slabs and beams
24.4—Shrinkage and temperature reinforcement
24.4.3—Nonprestressed reinforcement
24.4.4—Prestressed reinforcement
24.5—Permissible stresses in prestressed concrete flexural members
24.5.1—General
24.5.2—Classification of prestressed

Chapter 25—Reinforcement Details
25.1—Scope
25.2—Minimum spacing of reinforcement
25.3—Standard hooks, seismic hooks, crossties, and minimum inside bend diameters
25.4—Development of reinforcement
25.4.1—General
25.4.2—Development of deformed bars and deformed wires in tension
25.4.3—Development of standard hooks in tension
25.4.4—Development of headed deformed bars in tension
25.4.5—Development of mechanically anchored deformed bars in tension
25.4.6—Development of welded deformed wire reinforcement in tension
25.4.7—Development of welded plain wire reinforcement in tension
25.4.8—Development of pretensioned seven-wire strands in tension
25.4.9—Development of deformed bars and deformed wires in compression
25.4.10—Reduction of development length for excess reinforcement
25.5—Splices
25.5.1—General
25.5.2—Lap splice lengths of deformed bars and deformed wires in tension
25.5.3—Lap splice lengths of welded deformed wire reinforcement in tension
25.5.4—Lap splice lengths of welded plain wire reinforcement in tension
25.5.5—Lap splice lengths of deformed bars in compression
25.5.6—End-bearing splices of deformed bars in compression
25.5.7—Mechanical and welded splices of deformed bars in tension or compression
25.6—Bundled reinforcement
25.6.1—Nonprestressed reinforcement
25.6.2—Post-tensioning ducts
25.7—Transverse reinforcement
25.7.1—Stirrups
25.7.2—Ties
25.7.3—Spirals
25.7.4—Hoops
25.8—Post-tensioning anchorages and
couplers
25.9—Anchorage zones for post-tensioned tendons
 25.9.1—General
 25.9.2—Required strength
 25.9.3—Local zone
 25.9.4—General zone
 25.9.4.3—Analysis of general zones
 25.9.4.4—Reinforcement limits
 25.9.4.5—Limiting stresses in general zones
 25.9.5—Reinforcement detailing

Chapter 26—Construction Documents and Inspection
 26.1—Scope
 26.2—Design criteria
 26.2.1—Design information
 26.3—Member information
 26.4—Concrete materials and mixture requirements
 26.4.1—Concrete materials
 26.4.1.1—Cementitious materials
 26.4.1.1.1—Compliance requirements
 26.4.1.2—Aggregates
 26.4.1.2.1—Compliance requirements
 26.4.1.3—Water
 26.4.1.3.1—Compliance requirements
 26.4.1.4—Admixtures
 26.4.1.4.1—Compliance requirements
 26.4.1.5—Steel fiber reinforcement
 26.4.1.5.1—Compliance requirements
 26.4.2—Concrete mixture requirements
 26.4.2.1—Design information
 26.4.2.2—Compliance requirements
 26.4.3—Proportioning of concrete mixtures
 26.4.3.1—Compliance requirements
 26.4.4—Documentation of concrete mixture characteristics
 26.4.4.1—Compliance requirements
 26.5—Concrete production and construction
 26.5.1—Concrete production
 26.5.1.1—Compliance requirements
 26.5.2—Concrete placement and consolidation
 26.5.2.1—Compliance requirements
 26.5.3—Curing concrete
 26.6—Concrete evaluation and acceptance
 26.6.1—Design information
 26.6.2—Compliance requirements
 26.7—Anchor to concrete
 26.7.1—Design information
 26.7.2—Compliance requirements
 26.8—Embedments
 26.8.1—Design information
 26.8.2—Compliance requirements
 26.9—Additional requirements for precast concrete
 26.9.1—Design information
 26.9.2—Compliance requirements
 26.10—Additional requirements for prestressed concrete
 26.10.1—Design information
 26.10.2—Compliance requirements
 26.11—Formwork
 26.11.1—Design of formwork
 26.11.1.1—Design information
 26.11.1.2—Compliance requirements
 26.11.2—Removal of formwork
 26.11.2.1—Compliance requirements
 26.12—Concrete evaluation and acceptance
 26.12.1—General
 26.12.1.1—Compliance requirements
 26.12.2—Frequency of Testing
 26.12.2.1—Compliance requirements
 26.12.3—Acceptance criteria for standard-cured specimens
Chapter 27—Strength Evaluation of Existing Structures

27.1—Scope
27.2—General
27.3—Analytical strength evaluation
 27.3.1—Verification of as-built condition
 27.3.2—Strength reduction factors
27.4—Strength evaluation by load test
 27.4.1—General
 27.4.2—Test load arrangement and load factors
 27.4.3—Test load application
 27.4.4—Response measurements
 27.4.5—Acceptance criteria
27.5—Reduced load rating

318.2—Building Code Requirements for Concrete Thin Shells

1.1—Scope
2.1—Definitions
3.1—Analysis and design
4.1—Design strength
5.1—Specified concrete cover for thin shells
6.1—Shell reinforcement
7.1—Construction