

April 3, 2023 – San Francisco, CA

Development and Application of Non-proprietary UHPC Mixtures for **Pretensioned Bridge Girders** ACI / JCI – 6th Joint Seminar Mary Beth Hueste, Anol Mukhopadhyay, Stefan Hurlebaus, John Mander Amreen Fatima, Hyeonki Hong, Tevfik Terzioglu, Brittni Cooper, Jay Shah

Zachry Department of Civil & Environmental Engineering Texas A&M University Texas A&M Transportation Institute College Station, Texas

Research Objectives

Development of Nonproprietary UHPC Mixtures
 Production of Full-Scale Precast Pretensioned Bridge Girders
 Full-Scale UHPC Girder Testing

Part I: Development of Nonproprietary UHPC Mixture and Plant Production

Requirements for UHPC Mixture Development

Questionnaire Results

- Constituent materials
 - Currently used materials
 - Type III cement, fly ash, HRWR, natural sand
- Curing
 - No heat treatment
- Prestressing transfer
 - Within 16 20 hours
- Mixing and Placement
 - Use existing mixer (50-60% of capacity) and standard transporters

Properties and Durability

- Workability
 - Sufficient flow spread
- Mechanical Properties
 - f'_{ci} at release = 12 14 ksi
 - f_c' at service = 18 20 ksi
- Durability
 - Superior transport properties

Challenge: achieving 12 – 14 ksi within 20 hours without heat treatment

Selected Mixture Optimized with Precast Plant Materials

Mixture Proportion Comparison

Constituent	Proprietary UHPC ¹	Developed Plant UHPC	Material used in Study
Cement	1.00	1.00	Type III
Silica fume	<u>0.33</u>	<u>0.08</u>	Densified
GQ / <u>Fly ash</u>	0.30 (GQ)	0.10	Class F fly ash
Sand	1.43	1.12	Natural sand, #4
Water	0.15	0.21	
HRWR	0.04	0.024	
Accelerator	0.04		
Steel fiber	2.0% by volume	<u>1.5% by</u> volume	0.008" diameter 0.5" long

1. FHWA-HRT-06-103

Mix proportion by cement weight

2. GQ: Ground Quartz

Production of UHPC Girder at Precast Plant

UHPC Mixing using existing twin shaft mixer

Vibrating the screen for steel fiber addition (2 in. spacing screen)

Placement using Tuckerbuilt

Production of UHPC Girder at Precast Plant

Tx34-2 Girder, 50 ft long

Compressive Strength

Property	Target	Average Value (cast samples at plant)	Comment
Compressive strength	 12 – 14 ksi (release) 18 – 20 ksi (service) 	 > 12 ksi at release (20 hours) 14.3 – 16.1 ksi (24 hours) 17.9 – 19.2 ksi (28 days) 	✓ Target met

Additional Hardened Properties

Property	Target	Average Value (cast samples at plant)	Comment
Modulus of Elasticity	_	• 6300 – 7400 ksi	Consistent with literature
Uniaxial Tensile Strength	0.75 ksi at release1.0 ksi at service	 0.55 – 0.81 ksi (7 days) 0.31 – 1.28 ksi (28 days) 	Average is slightly less than target, but individual specimens met the target.
Inferred Flexural Tension Strength	 2.0 ksi at service (PCI recommendation) 	 1.9 – 2.0 ksi (3 days) 2.0 – 2.4 ksi (28 days) 	✓ Strength target met

Modulus of Elasticity Test Setup

Uniaxial Tensile Strength Test Setup

Inferred Tension Bending Test Setup

Durability

Bulk / Surface Resistivity at 56 days (kΩ-cm)	RCPT (Coulombs)	ASR (with reactive sand)	Freeze-Thaw Resistance	Scaling Resistance	Abrasion Resistance (mass loss)	Service Life Prediction*
210 / 214 (Very Low)	54 (Negligible)	0.049x10 ⁻³ at 90 days (Negligible)	No degradation (Mass Change: 0.04%)	Rating 1 (Very slight scaling)	Top: 0.07% Bottom: 0.03%	> 150 years

- * Service life prediction analyzed using Fick's 2nd law with bulk resistivity data.
- * Diffusion coefficient: 2.75 x 10^{-14} m²/s

Surface resistivity testing

Abrasion resistance testing (left) and samples after abrasion (right)

Fiber Distribution and Orientation

• Fiber distribution was investigated using <u>cored samples from the girders</u> with X-ray CT scanning and infrared images.

Well Distributed and Randomly Oriented Fibers

Possible Formation of Elephant Skin for Tx54 Girder Specimen

Cost Analysis

Cost Comparison

UHPC	\$ / cyd	Materials (Fiber volume) Source		
TxDOT	\$602	Type III, natural sand (1.5%)	This research study	
Michigan DOT	\$893	Type I, quartz sand (2.0%)	El-Tawil et al. (2018)	
Montana DOT	\$561	Type I/II, masonry sand (2.0%)	Berry et al. (2017)	
Missouri DOT	\$1017	Type III, natural sand (2.0%)	Khayat and Valipour (2018)	
FHWA \$730		Type II/V, natural sand (1.5%)	Wille (2013)	
	\$965	White, natural sand (1.5%)		
	\$1122	White, quartz sand (1.5%)		
Proprietary	\$2000	Not listed	Tadros (2019)	

Cost of Developed Mix (\$/cyd)*

*Cost analysis was conducted in 2020.

Part I: Development of UHPC Mixture: Summary and Conclusions

• Development of Nonproprietary UHPC Mixture

- ✓ Locally available and commonly used materials at precast plant in Texas.
- ✓ Reduction in steel fiber content (1.5 percent) for cost-effectiveness.
- ✓ High early strength (12–14 ksi within 20 hours) without heat treatment and accelerator.
- ✓ Superior durability: high resistivity and freeze-thaw, scaling, abrasion, and ASR resistance.
- ✓ Long service life span (150+ years)

• Production and Fabrication

- ✓ Successful use of existing mixer (50–60% mixer capacity)
- \checkmark Girder fabrication with multiple batches and placements using Tuckerbuilt
- ✓ Release at 20 hours (compressive strength > 12 ksi)
- Fiber Distribution and Orientation
 - \checkmark Overall, steel fibers were well-distributed with random orientation.
 - ✓ Possible risk of fiber segregation due to a high flow spread (> 11 in.) or elephant skin formation

Part 2: Structural Full-Scale Testing

Structural Full-Scale Testing

Major Technical Objectives

- ✓ Conduct *flexure test* at midspan each girder specimen
- ✓ Conduct *shear test* at each end of girder specimen
- ✓ Compare the *experimental* observations with the *predicted* capacity and *design* strength

Tx34-1 Girder Test Setup

Tx34-2 Girder Specimen

Tx54 Girder Test Setup

Tx54 Girder Specimen: Harped Tendon Profile

Tx54 Flexure Test

- Flexure crack occurred at 560 kips (total actuator load)
- Shear crack developed at the ends at 698 kips
- Flexure and shear crack formation increased at 720 kips

Flexure Cracks Tx54

Tx54 Minimum Web Reinf. End - Shear Test

- Shear Span-to-Depth Ratio = 2.37
- Uniaxial Tensile Strength = 0.95 ksi

Shear Force vs Maximum Deflection

Tx54 No Web Reinf. End - Shear Test

Shear Force vs Maximum Deflection

Girder Specimens – Demand and Capacity

Girder Testing: Summary and Conclusions

• Design

- ✓ AASHTO Draft Recommendations for UHPC: nominal flexure and shear strengths are conservative relative to measured strengths
- ✓ UHPC bridge girders provide increased design efficiency compared to CC girders with reduced crosssections, longer spans, and larger girder spacings.

• Flexure Performance

- \checkmark No cracking observed up to factored load demand.
- ✓ Applied moment demand on girder specimens ranged from 30–47 percent higher than factored design moment.

• Shear Performance

- ✓ Minimum transverse reinforcement and harped tendons enhance shear performance.
- ✓ All girder ends provided at least twice the shear capacity of the factored demand [except Tx34-1 end with no web reinforcement and low uniaxial tensile strength].

Composite Action

- ✓ Interface shear reinforcement controlled the interface slip up to factored design loads.
- ✓ Limited slip was observed at higher loads.

Thank you!

Acknowledgments Research Sponsor: Texas Department of Transportation (Project 0-6982)

Final Report

- Vol. 1 UHPC Mixture Development and Material-Level Experiments
- Vol. 2 Structural Analysis, Design, and Fullscale Testing of Precast, Pretensioned Girders
- Vol. 3 UHPC Production Guidelines and Design Recommendations with Design Examples

Appendix

UHPC Project Team

Texas Department of Transportation

- Tom Schwerdt (TxDOT, Project Manager)
- Robert Owens (TxDOT, Project Director)
- TxDOT Project Monitoring Committee: Ahmed Al-Basha, Biniam Aregawi, Rachel Cano, Geetha Chandar, Chad Dabbs, Jamie Farris, Igor Kafando, Andy Naranjo, Joe Roche, Prapti Sharma, Jason Tucker

TAMU/TTI Research Team

- Mary Beth Hueste RS
- Anol Mukhopadhyay, Stefan Hurlebaus, John Mander
- Amreen Fatima, Hyeonki Hong, Tevfik Terzioglu, Brittni Cooper, Jay Shah

Recommended Flow Spread Value for Qualification and Acceptance Testing

Flow Spread Range, in.	Color Code	Description	Comments
flow < 9.5	Red	Unacceptable	 Poor workability
			 Higher risk of elephant skin
			formation
$9.5 \le \text{flow} < 10.0$	Orange	Acceptable	 Relatively low workability
			 Some risk of elephant skin
			formation
$10.0 \le \text{flow} \le 10.5$	Green	Desirable	 Good workability
			 None or negligible risk of
			elephant skin
			 Negligible fiber segregation*
$10.5 < flow \le 11.0$	Yellow	Acceptable	 Some risk of fiber segregation
			 Better acceptability compared
			to mixture with flow < 10.0 in.
flow > 11.0	Red	Unacceptable	 High risk of fiber segregation

Recommended Values for Qualification and Acceptance Testing

Property	Recommended Value
Temperature at	80 – 100 °F is recommended. A high discharge
discharge	temperature near 100 °F demands placement within
	a relatively short period (less than 10 minutes).
Density	150 – 155 lb/ft ³ is recommended for 1.5 percent fiber
	volume.
Compressive strength	$f'_{c \ at \ release} \geq 65\% \ of \ f'_{c \ at \ service}$
	$[f'_{c \ at \ release} \ge 12 \ ksi \ when \ f'_{c \ at \ service} = 18 \ ksi]$
Direct uniaxial tension	0.70 – 0.75 ksi at release, 0.85 – 1.0 ksi at service
test	

