Leveraging machine learning to better understand structural behavior under extreme loads

ACI Fall Convention | 28 October 2023

Stephanie Paal, Ph.D. **Associate Professor** Zachry Department of Civil and Environmental Engineering, TAMU <u>sgpaal@tamu.edu</u> <u>paalresearchgroup.com</u>

CMMI #1944301

Hongrak Pak

Huan Luo, PhD

The goal is to use machine learning to understand <u>more</u> not to understand less.

Developed symbiotically, hybrid data-driven (AI)-physics-based approaches allow us to get the best of both worlds.

High accuracy Computational efficiency Tendency towards real-time Generalization capabilities

Example: Seismic performance of RC structures

Develop large databases to validate framework and individual approaches

ML-based seismic performance prediction at the component-level

Hybrid ML-physics-based seismic performance prediction at the system-level

Provide solutions to data-related problems: missing data, outliers, small data

Develop large databases to validate framework and individual approaches

ML-based seismic performance prediction at the component-level

Hybrid ML-physics-based seismic performance prediction at the system-level

Provide solutions to data-related problems: missing data, outliers, small data

The data...

Marder and Elwood, Seismic testing of ductile RC beams (doi:10.17603/DS2SQ2K)

Recon Portal Map Viev

New Reconnaissance Data Available in the DesignSafe Recon Portal The DesignSafe *Recon Portal* provides an interactive world map displaying natural hazard events with associated datasets. Datasets have recently been added to the Recon Portal for Hurricanes Michael, Florence, and Lane, as well as earthquakes in Indonesia and Haiti. To learn how to contribute, visit the Recon Portal User Guide.

Building the database 422 reinforced concrete columns under pseudo-static cyclic loading

- 262 rectangular columns
- 160 circular columns
- Spanning all failure modes (306 ductile | 116 non ductile)

Property

Shear span to effective depth ratio

Stirrup spacing to effective depth

Concrete compressive strength

Longitudinal reinf. yield stress

Transverse reinf. yield stress fyt

Longitudinal reinf. ratio

Transverse reinf. ratio

Axial load ratio (P/Agfc)

	Min	Max	Mean	Std
0	1.08	8.40	3.84	1.57
	0.11	1.14	0.32	0.21
	16	118	50.40	28.72
	318	635	437.6	65.9
	249	1424	486.9	217.6
	0.01	0.06	0.02	0.01
	0.0006	0.03	0.008	0.005
	0	0.9	0.26	0.19

Develop large databases to validate framework and individual approaches

ML-based seismic performance prediction at the component-level

Hybrid ML-physics-based seismic performance prediction at the system-level

Provide solutions to data-related problems: missing data, outliers, small data

Component-level prediction

Independent (Input) Variables

 X_1 : Column failure mode X_2 : Column gross sectional area *X*₃: Concrete compressive strength X_{4} : Longitudinal reinforcement yield stress X₅: Longitudinal reinforcement area *X*₆: Column effective depth *X*₇: Transverse reinforcement yield stress *X₈*: Transverse reinforcement area X_{9} : Stirrup spacing to effective depth ratio X_{10} : Shear span to effective depth ratio X_{11} : Applied axial load X_{12} : Longitudinal reinforcement ratio X_{13} : Transverse reinforcement ratio X_{14} : Axial load ratio X_{15} : Maximum normalized shear stress

- Y_6 : Drift ratio at ultimate shear
- **Y** : Hysteretic parameters

Component-level prediction

Independent (Input) Variables

 X_1 : Column gross sectional area

*X*₂: Concrete compressive strength

- X₃: Longitudinal reinforcement yield
- *X*₄: Longitudinal reinforcement area
- *X*₅: Column effective depth

Dependent (Output) Variables *Y*₁: Yield shear force *Y*₂: Max shear force *Y*₃: Drift ratio @ yield *Y*₄: Drift ratio @ max

Comparison to traditional modeling approaches

Flexure-critical¹⁻⁴

Comparison to traditional formula-based approaches

Shear-critical¹⁻⁷

Flexure-shear-critical¹⁻⁷

Component-level prediction

Developed two different data-driven solvers using the experimentally available data to define critical parameters for a structure under quasi-static cyclic loading and ground motions.

Comparison to traditional modeling approaches

24/50

Comparison to traditional modeling approaches

Quantification	AI Model			Traditional Model		
Indicators	R ²	RMSE	MAE	R ²	RMSE	MAE
V_y (kN)	0.995	9.34	5.99	0.678	77.40	63.68
δ_y (%)	0.946	0.06	0.04	-1.595	0.40	0.35
V_m (kN)	0.991	16.13	12.84	0.907	50.51	33.00
δ_m (%)	0.944	0.25	0.21	-2.139	1.90	1.36
V_u (kN)	0.965	29.38	20.74	0.819	66.71	52.94
δ_u (%)	0.871	0.66	0.40	0.542	1.25	0.73
Dissipated Energy	0.987	9.49	7.13	0.723	44.12	30.62
Comp Time (s)	4		1016			

Near-real-time prediction of the capacity of reinforced concrete columns based only on design and hazard characteristics.

Component-level seismic response history

0.7964

0.9872

Maximum Shear (kN)

Dissipated Energy (kJ)

Computational Time (s)

Al Model		Traditional Model				
RMSE	MAE	R ²	RMSE	MAE		
0.64	0.49	0.7793	1.21	0.83		
0.30	0.22	-0.5633	0.61	0.50		
78.04	73.49	-0.3449	200.61	155.11		
43.64	36.46	0.6241	236.40	166.64		
137		10991				

6

6

7

Develop large databases to validate framework and individual approaches

ML-based seismic performance prediction at the component-level

Hybrid ML-physics-based seismic performance prediction at the system-level

Provide solutions to data-related problems: missing data, outliers, small data

Uses experimental data in conjunction with machine learning to predict the seismic performance of an RC system.

System-level prediction

System-level prediction

AI Model to define parameters at each story

╋

Test specimen: planar large scale (1:2), 3-bay, 3story RC frame subjected to quasi-static cyclic loading

Xie et al. (2015)

System-level prediction

AI Model to define parameters at each story

╋

10s vs. 30'

Develop large databases to validate framework and individual approaches

ML-based seismic performance prediction at the component-level

Hybrid ML-physics-based seismic performance prediction at the system-level

Provide solutions to data-related problems: missing data, outliers, small data

Developed symbiotically, hybrid data-driven (AI)-physics-based approaches allow us to get the best of both worlds.

But, can we also make advances far beyond what we can imagine with existing approaches?

High accuracy Computational efficiency Tendency towards real-time Generalization capabilities

Leveraging machine learning to better understand structural behavior under extreme loads

ACI Fall Convention | 28 October 2023

Stephanie Paal, Ph.D. **Associate Professor** Zachry Department of Civil and Environmental Engineering, TAMU <u>sgpaal@tamu.edu</u> <u>paalresearchgroup.com</u>

CMMI #1944301

Hongrak Pak

Huan Luo, PhD