

COLLEGE OF ENGINEERING School of Civil and Construction Engineering

A Framework for Self-Sufficient Reactive Transport Modeling of Concrete with Low-Carbon Foot-Print

O. Burkan Isgor and W. Jason Weis

Concrete with Low-carbon footprint

New concrete mixtures

May 20, 2022

transport properties, electrical properties, etc.

How will these new concretes perform under service conditions?

- Chemical deterioration
 - Corrosion of steel, AAR,sulfate attack, acid attack,carbonation, salt damage, etc.
- Physical deterioration
 - Freeze/thaw damage, etc.

upload.wikimedia.org/wikipedia/comm ons/e/ea/Chungsong_bridge_04.jpg

commons.wikimedia.org/wiki/File:Figure_3_-_ASR_cracks_concrete_step_barrier_FHWA_2006.PNG

Water plays a major role in most deterioration mechanisms !!!

Reactions (e.g., chloride binding, sulfate attack, carbonation, etc.)

https://commons.wikimedia.org/wiki/File:Osmosis_and_Diffusion_CLMiller_CC_BY_SA.png

$$-\underline{D_{i} \nabla c_{aq,i}} - \underline{D_{i} c_{aq,i}} \frac{Fz}{RT} \nabla \emptyset - \underline{D_{i} c_{aq,i}} \nabla \ln \gamma_{i} + \underline{c_{aq,i} v_{L} + c_{G,i} v_{G}}$$

$$|\text{Ionic flux} = Diffusion + \frac{Electrical}{migration} + \frac{Chemical}{activity} + \frac{Advection}{Chemical}$$

$$|\overrightarrow{v_{L}} + \overrightarrow{v_{L}} + \overrightarrow{v_{L}} + \overrightarrow{v_{L}} + \overrightarrow{v_{L}}$$

"Self-sufficient" model

Using thermodynamical calculations...

Isgor / Weiss - 2023 ACI Fall	Convention	(Boston)	
-------------------------------	------------	----------	--

Time marching

How do we move from "empirical" to "selfsufficient"?

Can we predict properties we need?

Azad et al (2017); Isgor and Weiss (2018); Bharadwaj et al. (2019, 2021); Glosser et al. (2019, 2021)

October 30, 2023

Modeling framework

Modeling framework – SCM reactivity College of Engineerir

College of Engineering

Pozzolanic reactivity test (PRT)

Pozzolanic reactivity test ("PRT") can determine <u>maximum</u> <u>degree of reactivity (DoR*)</u>

 $SCM + CH + H_2O \xrightarrow{50^{\circ}C} \longrightarrow$

Measure heat

release

reaction products + Q

$$DOR^* = \frac{Q_{\infty} - c_1 \cdot CH_{consumed}}{c_2}$$

Measure CH

consumption

Modeling framework - kinetics

Modeling framework - thermodynamics College of Engineerir

College of Engineering

Does this framework work?

Does this framework work?

Thermodynamically calculated chloride binding isotherms:

(Isgor and Weiss, Materials and Structures, 2019)

(Azad et al., Computer & Geosciences, 2016)

So, we can model any mixture...

Azad et al., Computer & Geosciences, 2016

Validation / benchmarking

outflow

0.5 m

Isgor / Weiss - 2023 ACI Fall Convention (Boston)

Inflow:

0.001 M MgCl

October 30, 2023

Conclusion

Increase the use of low-carbon footprint cementitious materials and powder extenders

- Modeling reactive transport processes in concrete for predicting service life is possible irrespective of
 - Chemical composition of the materials
 - Reactivity of the materials
- We can do this using a coupled approach in which we model reactive processes using thermodynamic / kinetic algorithms and transport processes using finite element analysis.
- This approach eliminates the need to experimentally characterize every concrete mixture for modeling, hence it is dubbed "self-sufficient".
- This approach allows the modeling of concrete produced with underutilized, novel, low-carbon footprint binders and powder extenders.

Acknowledgements

Prof. Jason Weiss

Dr. Deborah Glosser Ph.D. student, Post-doctoral researcher (currently, Assistant Professor at UWW)

Dr. Vahid Jafari Azad Post-doctoral researcher (currently, Senior Engineer at WSP)

> Dr. Qin Pang Post-doctoral researcher (currently, Researcher at PNNL)

Dr. Keshav Bharadwaj

Ph.D. student, Post-doctoral researcher (currently, Assistant Professor at IIT, Delhi)

O. Burkan Isgor Burkan.lsgor@oregonstate.edu