

Application of Natural and Synthetic Nano-/Micro-Fibers in 3D Printed Cementitious Composites

ACI 123: Research in Progress

Presented By: Abdullah Al Fahim

Advisor:

Dr. Mehdi Khanzadeh Moradllo

Date: 10/30/2023

Motivation & Innovation

- 3D printed cementitious materials has been receiving increasing attention
- Challenges exist to deliver cost-effective and sustainable 3D printed cementitious mixtures
- Cellulose Nanomaterials are "green" nanoparticles that can improve the mechanical properties of cement-based materials
- Alkali-activated materials has the potential to decrease the reliance on traditional cement

Introduction

- 3D printing has emerged as a promising technology in the construction industry
- Incorporation of fibers into cementitious composites can improve
 - Tensile strength
 - Ductility
 - Toughness
 - Fracture strength
 - Impact resistance
 - Fatigue performance, and
 - Durability of the composite
- The study explores the potential of fibers to enhance the mechanical properties, durability, and sustainability of 3D printed cementitious composites

Background (Natural Fibers)

- Cellulose Nanomaterials (CNs) are
 - Biodegradable
 - Renewable
 - Sustainable
 - Naturally abundant
- CNs are a promising material due to
 - High aspect ratio
 - High elastic modulus
 - High strength
- Two type of cellulose nanomaterials
 - Cellulose Nanocrystals (CNC)
 - 0.05-0.50 μm (L) and 3-5 nm (W)
 - Cellulose Nanofibers (CNF)
 - $1-5 \ \mu m$ (L) and $5-50 \ nm$ (W)

Background (Synthetic Fibers)

- Different types of synthetic fibers are commercially available.
- Polyacrylonitrile (PAN) fibers have
 - High mechanical strength
 - Strong chemical stability
 - High durability
 - Good resistance to friction and
 - High resistance to abrasion
- Glass fibers can
 - Improve mechanical performance
 - Good fire resistance
 - High strength

Background (Binders)

• Ordinary Portland Cement (OPC)

White cement

• Alkali-activated materials has the potential to decrease the reliance on traditional cement. Alkaliactivated binders are being promoted as a sustainable cementing binder systems

- A FA/GGBFS mass ratio of 70:30 was selected as aluminosilicate precursor
- A NaOH (5M)/Na₂SiO₃ mass ratio of 85:15 was selected as alkaline activator

Background (3D Printer)

Developing Printable Mixtures with Different Dosages of fibers

Impact of Fibers on Fresh Properties

Impact of Fibers on Mechanical Performance

Impact of Fibers on Mass Transport Properties

Impact of Fibers on Microstructure

Research Approach

TEMPLE UNIVERSITY

Department of Civil And Environmental Engineering

Experimental Program (Mix Design)

Mixture	Dosage								
Туре	0.00%	0.10%	0.15%	0.25%	0.30%	0.50%	1.00%	1.50%	1.75%
OPC-CNC									
OPC-CNF									
OPC-PAF									
OPC-GF									
AA-CNC									
WC-CNC									

Experimental Program (Mixing Procedure)

Experimental Program (Mixing Procedure)

Sample Preparation

- Ultimaker Cura is utilized for 3D modeling
- Geometry: 25(H) × 25(W) × 178(L) mm³
- 5 layers
- Perimeter filament: straight-line pattern
- Infill filament: zigzag pattern

Curing

- OPC/WC wet-cured at 23°C for 28 days
- AA sealed-cured at 23°C for 28 days or heat-cured at 60°C for 7 days

Experimental Program (Fresh Properties-Syringe Method)

Experimental Program (Fresh Properties-Syringe Method)

Experimental Program (Fresh Properties-Syringe Method)

OPC-CNC

- Compressive and flexural strength increases $\leq 1.00\%$.
- Concentration > 1.00%, agglomeration starts and work as a weak point.

OPC-CNF

- Compressive and flexural strength increases $\leq 0.10\%$.
- Concentration > 0.10%, agglomeration starts and work as a weak point.

OPC-PAN

- Compressive and flexural strength increases $\leq 0.25\%$.
- 0.25% is the critical concentration for PAN fibers.

OPC-GF

- Compressive and flexural strength increases $\leq 0.25\%$.
- 0.25% is the critical concentration for GF fibers.

WC-CNC

- Compressive and flexural strength increases $\leq 0.50\%$.
- Concentration > 0.50%, agglomeration starts and work as a weak point.

AA-CNC

- For seal-cured samples, compressive and flexural strength decreases.
- For heat-cured samples, increase in compressive is noticed.

Experimental Program (Internal Curing Potential of CNC)

Conclusion

- The critical concentration for different fibers were determined.
- Heat-curing of AA systems results in better mechanical performance compared to seal-cured systems.
- CNC works as a viscosity modifying agent for AA systems.
- CNC improves the degree of hydration of OPC and WC systems.
- CNC promotes internal curing.

Binder	Fiber	Curing Condition	Critical Concentration (%)		
	CNC	Wet-cured	1.00		
	CNF	Wet-cured	0.10		
UPC	PAN	Wet-cured	0.25		
	GF	Wet-cured	0.25		
• •	CNC	Seal-cured	0.30		
AA	CNC	Heat-cured	1.00		
WC	CNC	Wet-cured	0.50		

Future Work

- The mass transport properties will be evaluated based on
 - Porosity and
 - Bulk Electrical Resistivity
- The microstructure will be investigated using
 - **X-Ray Diffraction (XRD)** to characterize the phase composition.
 - Scanning Electron Microscopy (SEM) to characterize the microstructure.
 - Energy-dispersive X-ray (EDX) Spectroscopy to determine elemental composition.

U.S. Endowment for Forestry and Communities

Forest Products Laboratory

Acknowledgements

TAKTL

Thank You!

Abdullah Al Fahim

fahim@temple.edu

