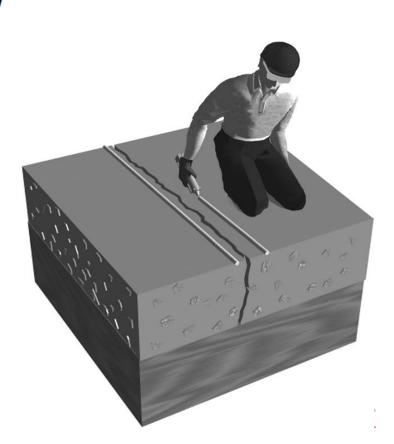
ACI RAP 2 CRACK REPAIR BY GRAVITY FEED WITH RESIN OCTOBER 16, 2018 SCOTT DISTEFANO

BUILDING TRUS

AGENDA

- Introduction
- Purpose of Repair
- When to Use
- Proper Preparation
- Selecting Materials
- Equipment
- Safety
- Repair Procedure
- Evaluation



INTRODUCTION

Life, Death, Taxes and Cracks!

FIELD GUIDE TO CONCRETE REPAIR APPLICATION PROCEDURES

Crack Repair by Gravity Feed with Resin

INTRODUCTION

- Causes may include:
 - Steel corrosion
 - Freezing & thawing
 - Sulfate attack
 - Alkali aggregate reaction
 - Poor construction practices
 - Improper joint spacing
 - Load imbalances
 - Many others...

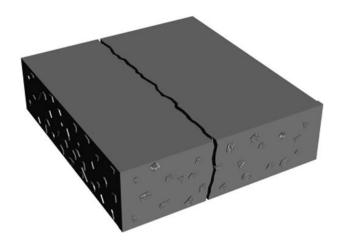
PURPOSE OF REPAIR

- Restore structural integrity
- Resist moisture penetration (0.002 in. width and greater)
- Form a plug to keep out:
 - Chlorides
 - Carbon dioxide
 - Sulfates
 - Aggressive chemicals
- Reduces future or further deterioration

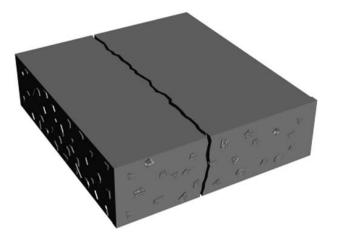

BUILDING 1

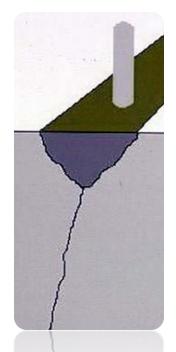
WHEN TO USE GRAVITY METHOD

- Large horizontal cracks
 - Individually treat
- Many small horizontal cracks
 - Treat as a whole, "healer/sealer"

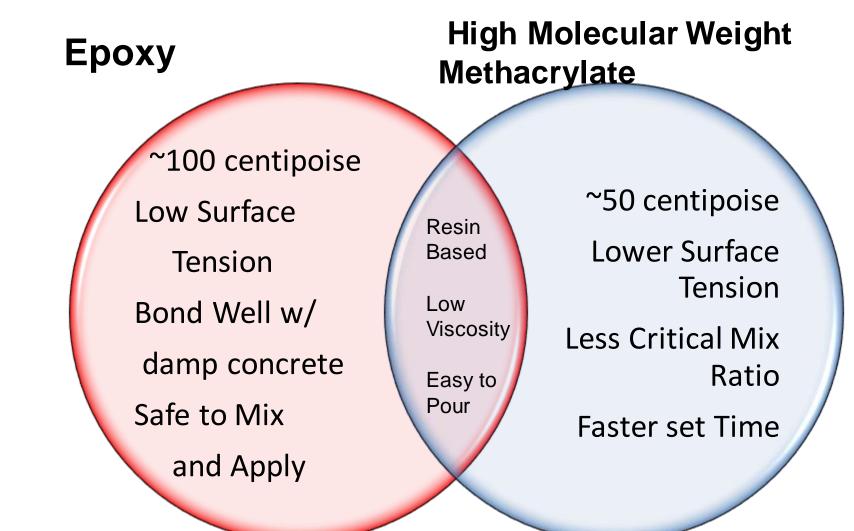


PROPER SURFACE PREPARATION


- ½" wide on each side
- Wire brush
 - Grinders may fill crack with dust
- Pressure washer
 - Allow to dry, at least 24 hrs
 - Moisture tolerant epoxy
- Compressed Air (oil free)
- Power Vacuums
- For large areas, consider power sanding or shotblast
- "V" groove or notch



PROPER SURFACE PREPARATION



SELECTING THE CORRECT MATERIALS

- 2 most common resins
 - HMWM
 - Lower viscosity & surface tension
 - Less critical mix ratios
 - Epoxies
 - Moisture tolerant
 - Safer to mix & apply
- Low Viscosity & Low surface tension is very important
 - Typical requirement, <200 cps
 - Epoxies tend to be <100cps</p>
 - HMWM's tend to be <50 cps</p>
 - Both have been documented <0.006" cracks</p>

SELECTING THE CORRECT MATERIALS

BUILDING TRU

SELECTING THE CORRECT MATERIALS

- ASTM C881 identifies basic criteria
- Other considerations include:
 - Modulus of elasticity (rigidity);
 - Working life;
 - Moisture tolerance;
 - Color
 - Compressive, flexural, and tensile strengths.

Table 1—ASTM C 881 requirements for epoxy resins that are used to bond hardened concrete to hardened concrete

	Type I*	$Type \ IV^{\dagger}$
Viscosity, centipoise	•	•
Grade 1 (low-viscosity), maximum	2000	2000
Grade 2 (medium-viscosity), minimum	2000	2000
Maximum	10,000	10,000
Consistency, in.		
Grade 3 (non-sagging), maximum	1/4	1/4
Gel time, min.	30	30
Bond strength, minimum, psi		
2 days, moist cure [‡]	1000	1000
14 days, moist cure	1500	1500
Absorption, 24 h maximum, %	1	1
Heat deflection temperature		
7 days minimum, °F	_	120
Linear coefficient of shrinkag	e	
On cure, maximum	0.005	0.005
Compressive yield strength	•	•
7 days minimum, psi	8000	10,000
Compression modulus, minimum, psi	150,000	200,000
Tensile strength, 7 days minimum, psi	5000	7000
Elongation at break, minimum, %	1	1

*Type I: for use in non-load-bearing applications.

[†]Type IV: for use in load-bearing applications.

Source: ASTM C 881, Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete.

^{*}Moist-cured systems should be tested by assembling the sections to be bonded before immersing in water.

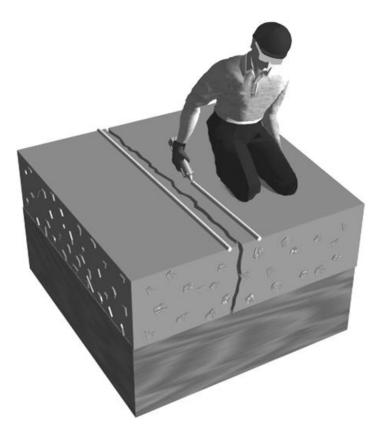
PROPER EQUIPMENT

For small to midsize projects (up to 10,000 ft2 [930 m2]):

- Mixing buckets, drills, mixing paddles;
- Flat rubber squeegees, brooms, or rollers;
- Small cans or squeeze bottles for pouring into individual cracks; and
- Grinder and air compressor.

For large projects (over 10,000 ft2 [930 m2]):

- Mixing buckets, drills, mixing paddles;
- Mixing tanks with spray bar (low pressure pumps, no atomization);
- Flat rubber squeegees, brooms, or rollers;
- Sand spreaders or blowers; and
- Grinder and air compressor.

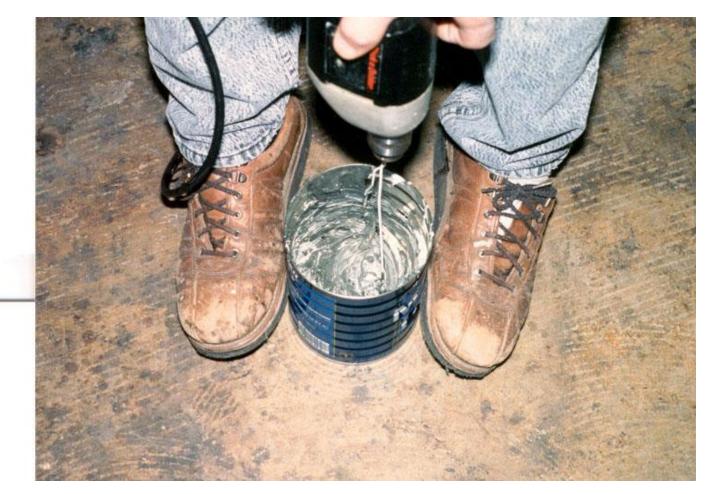


SAFETY CONSIDERATION

- User must document safety practices:
 - Having Material Safety Data Sheets (MSDS) available on site;
 - Wearing protective clothing and protective eyewear
 - Wearing rubber gloves or barrier creams for hand protection
 - Having eye wash facilities available;
 - Wearing respirators where needed;
 - Providing ventilation of closed spaces;
 - Secured storage of hazardous materials;
 - Having necessary cleaning materials on hand; and
 - Notifying occupants of pending repair procedures.
 - SPECIAL NOTE ON HMWM NEVER MIX INITATOR AND PRMOTER DIRECTLY!

- 1. Mix the resin
- After prep, mix according to manufacturer.
- A sealant can be used on individual cracks to create a reservoir

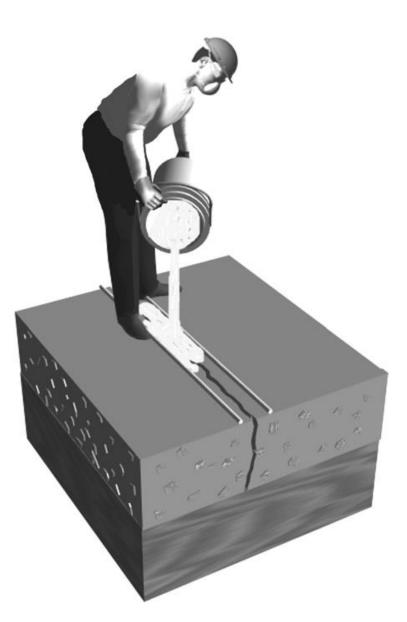
1. Mix the resin



1. Mix the resin – NOT LIKE THIS!

1. Mix the resin – OR THIS!

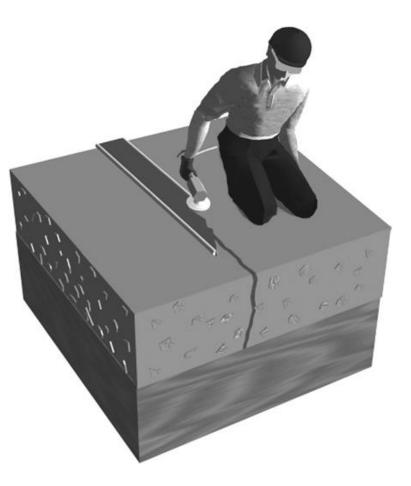
1. Mix the resin – OR THIS!


BUILDING TRUST

1. Mix the resin – AND ESPECIALLY NOT LIKE THIS!

- 2. Pour the Resin
- Pour mixed material (within pot life)
- Allow to penetrate, pour until full
- Flood coats:
 - Apply resin evenly
 - Pool over cracks
 - Flat squeegee, broom, roller

2. Pour the Resin


- 3. Inspect the filling
- Signs of proper penetration
 - Air bubbles
 - Dry spots
- ALLOW TIME!
 - 20-30 minutes min.

- 4. Remove Excess Resin
- Flat squeegee

- 5. Apply Sand
- Safety purposes, non-slip
- Adhesion for coatings

- 6. Finish Smooth
- Remove sealant and excess polymer if required

BUILDING 1

HOW TO CHECK THE REPAIR

- 1. Test cores
 - Engineer should determine location to avoid high stress areas
 - Visual evaluation for penetration depth
 - Must patch with expansive high strength grout (epoxy or cement based)
 - ASTM C492 Splitting Tensile
- 2. Resin Properties ASTM D495
 - Cured Prisms
 - Compressive strength
 - Correctly mixed and cured

SOURCES

- California Department of Transportation, "Specifications
- and Special Provisions for Use of High Molecular Weight
- Methacrylate Monomers to Seal Bridge Decks," Contract
- No. 04-001754.
- Jerzak, H. P., 1991, "High Molecular Weight Methacrylate
- Resins in California," State of California Department of
- Transportation, Jan.
- Krauss, P. D., 1991, "Bridge Deck Repair Using Polymers,"
- paper presented at International Congress on Polymers
- in Concrete, San Francisco, Calif. Sept. 24-27.
- Murray, M. A., and Eisenhut, W. O., 1995, "A Concrete Healer
- and Sealer," Concrete Repair Digest, V. 6, No. 3, June-July.
- Pfeifer, D. W., and Perenchio, W. F., 1982, "Coating, Penetrants,
- and Specialty Concrete Overlays for Concrete Surfaces,"
- paper presented at NACE seminar, Chicago, Sept. 27-29.
- Rodler, D.J.; Whitney, D. P.; Fowler, D. W.; and Wheat,
- D. L., 1989, "Repair of Cracked Concrete with High Molecular
- Weight Methacrylate Monomers," Polymers in
- Concrete: Advances and Applications, SP-116, P. Mendis
- and C. McClaskey, eds., American Concrete Institute, Farmington
- Hills, Mich., pp. 113-128.
- Sprinkel, M. M., "Use of High Molecular Weight Methacrylate
- Monomers to Seal Cracks in Bridge Decks, Retard
- Alkali-Silica Aggregate Reactions, and Prime Bridge
- Surfaces for Overlays," Virginia Department of Transportation
- Research Council.
- Wiss Janney Elstner Associates, 1986, "Corrosion Protection
- Tests on Reinforced Concrete Treated with Sikaguard 70 and
- SikaPronto19CrackHealerforSika Corporation, Lyndhurst,
- N.J.," *Report* No. 831298, Sept.

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

BU