ACI MATERIALS JOURNAL

Keyword Index Volume 110, 2013 January through December 2013

American Concrete Institute

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
accelerated curing	Sustainable Processing of Cellulose Fiber Cement Composites	110-M26	Parviz Soroushian, Jong-Pil Won, and Maan Hassan	May-June 2013	305
accelerated tests	Factors That Affect Color Loss of Concrete Paving Blocks	110-M05	Federica Lollini and Luca Bertolini	JanFeb. 2013	45
ACI drop test	Impact Resistance of Blast Mitigation Material Using Modified ACI Drop-Weight Impact Test	110-M30	John J. Myers and Matthew Tinsley	May-June 2013	339
acidic attack	Factors That Affect Color Loss of Concrete Paving Blocks	110-M05	Federica Lollini and Luca Bertolini	JanFeb. 2013	45
acoustic emission	Acoustic-Emission-Based Characterization of Corrosion Damage in Cracked Concrete with Prestressing Strand	110-M09	Jesé Mangual, Mohamed K. ElBatanouny, Paul Ziehl, and Fabio Matta	JanFeb. 2013	89
adhesion	Three-Dimensional Optical Profilometry Analysis of the International Concrete Repair Institute Concrete Surface Profiles (CSPs)	110-M47	Lauren R. Millman and James W. Giancaspro	SeptOct. 2013	519
adsorption	Evaluation of Concrete Drying Shrinkage Related to Moisture Loss	110-M22	Reza Abbasnia, Mohammad Shekarchi, and Jamal Ahmadi	May-June 2013	269
adsorption	Synergistic and Antagonistic Effect of SO ₄ ^{2–} on DispersingPower of Polycarboxylate	110-M58	Ahmad Habbaba, Nadia Zouaoui, and Johann Plank	NovDec. 2013	641
aggregate	Aggregate Passivation: Lithium Hydroxide Aggregate Treatment to Suppress Alkali-Silica Reaction	110-M52	Craig W. Hargis, Maria C. G. Juenger, and Paulo J. M. Monteiro	SeptOct. 2013	567

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
aggregate content	Characterizing Cracking Potential of Cementitious Mixtures Based on Shrinkage and Humidity Drop Rate	110-M39	Ya Wei and Will Hansen	July-Aug. 2013	433
alkali-activated cement	Engineering Properties of Reactive Powder Concrete without Portland Cement	110-M56	Serdar Aydın and Bülent Baradan	NovDec. 2013	619
alkali-activated cementitious materials	Alkali-Activated Natural Pozzolan Concrete as New Construction Material	110-M29	Dali Bondar, Cyril J. Lynsdale, and Neil B. Milestone	May-June 2013	331
alkali-activated concrete	Unrestrained Short-Term Shrinkage of Calcium-Hydroxide-Based Alkali-Activated Slag Concrete	110-M12	Keun-Hyeok Yang, Ah-Ram Cho, and Jin-Kyu Song	MarApr. 2013	127
alkali-aggregate reaction	Aggregate Passivation: Lithium Hydroxide Aggregate Treatment to Suppress Alkali-Silica Reaction	110-M52	Craig W. Hargis, Maria C. G. Juenger, and Paulo J. M. Monteiro	SeptOct. 2013	567
alkali-silica reaction	Chemo-Mechanical Micromodel for Alkali- Silica Reaction	110-M07	Wiwat Puatatsananon and Victor Saouma	JanFeb. 2013	67
alkali-silica reaction	Novel Cementitious Binder Incorporating Cement Kiln Dust: Strength and Durability	110-M25	Piyush Chaunsali and Sulapha Peethamparan	May-June 2013	297
alkali-silica reaction	Twenty-Year Field Evaluation of Alkali-Silica Reaction Mitigation	110-M49	R. Doug Hooton, Chris Rogers, Carole Anne MacDonald, and Terry Ramlochan	SeptOct. 2013	539
anchorage	Simplified Diverse Embedment Model for Steel Fiber-Reinforced Concrete Elements in Tension	110-M36	Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio	July-Aug. 2013	403
ANOVA	Contribution of Specimen Surface Friction to Size Effect and Rupture Behavior of Concrete	110-M16	Raphael Kampmann, Michelle Roddenberry, and W. Virgil Ping	MarApr. 2013	169
autogenous	Self-Restraining Shrinkage Ultra-High- Performance Concrete: Mechanisms and Evidence	110-M31	Ahmed M. Soliman and Moncef L. Nehdi	July-Aug. 2013	355
autogenous deformation	Viscosity Modifiers to Enhance Concrete Performance	110-M44	Dale P. Bentz, Kenneth A. Snyder, Max A. Peltz, Karthik Obla, and Haejin Kim	SeptOct. 2013	495
autogenous shrinkage	Quantifying Stress Development and Remaining Stress Capacity in Restrained, Internally Cured Mortars	110-M01	J. L. Schlitter, D. P. Bentz, and W. J. Weiss	JanFeb. 2013	3
autogenous shrinkage	Shrinkage-Reducing Admixture: Effects on Durability of High-Strength Concrete	110-M32	Anne N. M. Lopes, Eugênia F. Silva, Denise C. C. Dal Molin, and Romildo D. Toledo Filho	July-Aug. 2013	365
beam	Resistance Model of Lightweight Concrete Members	110-M10	Anna M. Rakoczy and Andrzej S. Nowak	JanFeb. 2013	99
beam-column joint	Behavior of Self-Consolidating Rubberized Concrete Beam-Column Joints	110-M64	N. Ganesan, Bharati Raj, and A. P. Shashikala	NovDec. 2013	697
beams	Experimental Behavior of Reinforced Concrete Beams with Electric Arc Furnace Slag as Recycled Aggregate	110-M19	Carlo Pellegrino and Flora Faleschini	MarApr. 2013	197
bending	Experimental Behavior of Reinforced Concrete Beams with Electric Arc Furnace Slag as Recycled Aggregate	110-M19	Carlo Pellegrino and Flora Faleschini	MarApr. 2013	197
bias factor	Resistance Model of Lightweight Concrete Members	110-M10	Anna M. Rakoczy and Andrzej S. Nowak	JanFeb. 2013	99
blast mitigation material	Impact Resistance of Blast Mitigation Material Using Modified ACI Drop-Weight Impact Test	110-M30	John J. Myers and Matthew Tinsley	May-June 2013	339
bond	Simplified Diverse Embedment Model for Steel Fiber-Reinforced Concrete Elements in Tension	110-M36	Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio	July-Aug. 2013	403
bond	Three-Dimensional Optical Profilometry Analysis of the International Concrete Repair Institute Concrete Surface Profiles (CSPs)	110-M47	Lauren R. Millman and James W. Giancaspro	SeptOct. 2013	519
bond stress	Effect of Secondary Cracks for Cracking Analysis of Reinforced Concrete Tie	110-M20	Pier Giorgio Debernardi, Matteo Guiglia, and Maurizio Taliano	MarApr. 2013	207
calcium hydroxide	Feasibility Study of Using Raman Spectroscopy to Detect Hydration in Wet Pastes	110-M55	Fengjuan Liu and Zhihui Sun	NovDec. 2013	611

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
carbon dioxide gas	Sustainable Processing of Cellulose Fiber Cement Composites	110-M26	Parviz Soroushian, Jong-Pil Won, and Maan Hassan	May-June 2013	305
carbon uptake	Effect of Initial Curing on Carbonation of Lightweight Concrete Masonry Units	110-M40	Hilal El-Hassan, Yixin Shao, and Zaid Ghouleh	July-Aug. 2013	441
carbonation	Effect of Initial Curing on Carbonation of Lightweight Concrete Masonry Units	110-M40	Hilal El-Hassan, Yixin Shao, and Zaid Ghouleh	July-Aug. 2013	441
carbonation	Effects of Carbonation on Chloride Penetration in Concrete	110-M51	Myung Kue Lee, Sang Hwa Jung, and Byung Hwan Oh	SeptOct. 2013	559
cellulose fiber	Sustainable Processing of Cellulose Fiber Cement Composites	110-M26	Parviz Soroushian, Jong-Pil Won, and Maan Hassan	May-June 2013	305
cement	Mechanical Energy Dissipation Using Cement-Based Materials with Admixtures	110-M23	Po-Hsiu Chen and D. D. L. Chung	May-June 2013	279
cement composites	Sustainable Processing of Cellulose Fiber Cement Composites	110-M26	Parviz Soroushian, Jong-Pil Won, and Maan Hassan	May-June 2013	305
cement dispersion	Effects of Sand Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar	110-M03	Virak Han, Soty Ros, and Hiroshi Shima	JanFeb. 2013	23
cement kiln dust	Novel Cementitious Binder Incorporating Cement Kiln Dust: Strength and Durability	110-M25	Piyush Chaunsali and Sulapha Peethamparan	May-June 2013	297
cement type	Effect of Leaching on pH of Surrounding Water	110-M24	David W. Law and Jane Evans	May-June 2013	291
characterization	Characterization of Fly Ashes for Sulfate Resistance	110-M15	Rajaram Dhole, Michael D. A. Thomas, Kevin J. Folliard, and Thano Drimalas	MarApr. 2013	159
chemical shrinkage	Modeling the Effect of Curing Temperature and Pressure on Cement Hydration Kinetics	110-M13	Xueyu Pang, Christian Meyer, Robert Darbe, and Gary P. Funkhouser	MarApr. 2013	137
chemistry	Characterization of Fly Ashes for Sulfate Resistance	110-M15	Rajaram Dhole, Michael D. A. Thomas, Kevin J. Folliard, and Thano Drimalas	MarApr. 2013	159
chloride	Durability Properties of Sprayed Engineered Cementitious Composite	110-M45	Yi-Wei Lin, Allan Scott, Liam Wotherspoon, and Jason M. Ingham	SeptOct. 2013	503
chloride penetration	Effects of Carbonation on Chloride Penetration in Concrete	110-M51	Myung Kue Lee, Sang Hwa Jung, and Byung Hwan Oh	SeptOct. 2013	559
chloride penetration	Twenty-Year Field Evaluation of Alkali-Silica Reaction Mitigation	110-M49	R. Doug Hooton, Chris Rogers, Carole Anne MacDonald, and Terry Ramlochan	SeptOct. 2013	539
chloride profile	Effects of Carbonation on Chloride Penetration in Concrete	110-M51	Myung Kue Lee, Sang Hwa Jung, and Byung Hwan Oh	SeptOct. 2013	559
chlorides	Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance	110-M53	Matthew O'Reilly, David Darwin, JoAnn Browning, Lihua Xing, Carl E. Locke Jr., and Y. Paul Virmani	SeptOct. 2013	577
coefficient of variation	Resistance Model of Lightweight Concrete Members	110-M10	Anna M. Rakoczy and Andrzej S. Nowak	JanFeb. 2013	99
compressive strength	Design of Concrete Mixtures with Recycled Concrete Aggregates	110-M43	Adam M. Knaack and Yahya C. Kurama	SeptOct. 2013	483
compressive strength	Effect of Initial Curing on Carbonation of Lightweight Concrete Masonry Units	110-M40	Hilal El-Hassan, Yixin Shao, and Zaid Ghouleh	July-Aug. 2013	441
compressive strength	Effects of Sand Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar	110-M03	Virak Han, Soty Ros, and Hiroshi Shima	JanFeb. 2013	23
compressive strength	Mechanical Energy Dissipation Using Cement-Based Materials with Admixtures	110-M23	Po-Hsiu Chen and D. D. L. Chung	May-June 2013	279
compressive strength	New Views on Effect of Recycled Aggregates on Concrete Compressive Strength	110-M63	Vivian A. Ulloa, Emili García- Taengua, María-José Pelufo, Alberto Domingo, and Pedro Serna	NovDec. 2013	687
concrete damping	Temperature and Frequency Effects on Properties of Polymer-Modified Concrete	110-M18	Hal Amick and Paulo J. M. Monteiro	MarApr. 2013	187

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
concrete defect detection	Detection of Internal Defects in Concrete Members Using Global Vibration Characteristics	110-M48	H. Sezer Atamturktur, Christopher R. Gilligan, and Kelly A. Salyards	SeptOct. 2013	529
concrete failure	Contribution of Specimen Surface Friction to Size Effect and Rupture Behavior of Concrete	110-M16	Raphael Kampmann, Michelle Roddenberry, and W. Virgil Ping	MarApr. 2013	169
concrete inspection	Embedded Piezoelectric Sensors for Health Monitoring of Concrete Structures	110-M14	Bo Hu, Tribikram Kundu, Wolfgang Grill, Bingkang Liu, and Vahab Toufigh	MarApr. 2013	149
concrete masonry unit	Effect of Initial Curing on Carbonation of Lightweight Concrete Masonry Units	110-M40	Hilal El-Hassan, Yixin Shao, and Zaid Ghouleh	July-Aug. 2013	441
concrete pavement	Reversible Shrinkage of Concrete Made with Recycled Concrete Aggregate and Other Aggregate Types	110-M38	Rita E. Lederle and Jacob E. Hiller	July-Aug. 2013	423
concrete paving blocks	Factors That Affect Color Loss of Concrete Paving Blocks	110-M05	Federica Lollini and Luca Bertolini	JanFeb. 2013	45
concrete pumping	Prediction of Concrete Pumping: Part I— Development of New Tribometer for Analysis of Lubricating Layer	110-M59	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	647
concrete pumping	Prediction of Concrete Pumping: Part II—Analytical Prediction and Experimental Verification	110-M60	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	657
concrete pumping test	Prediction of Concrete Pumping: Part II—Analytical Prediction and Experimental Verification	110-M60	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	657
concrete relative humidity	Characterizing Cracking Potential of Cementitious Mixtures Based on Shrinkage and Humidity Drop Rate	110-M39	Ya Wei and Will Hansen	July-Aug. 2013	433
concrete rupture	Contribution of Specimen Surface Friction to Size Effect and Rupture Behavior of Concrete	110-M16	Raphael Kampmann, Michelle Roddenberry, and W. Virgil Ping	MarApr. 2013	169
corrosion	Acoustic-Emission-Based Characterization of Corrosion Damage in Cracked Concrete with Prestressing Strand	110-M09	Jesé Mangual, Mohamed K. ElBatanouny, Paul Ziehl, and Fabio Matta	JanFeb. 2013	89
corrosion	Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance	110-M53	Matthew O'Reilly, David Darwin, JoAnn Browning, Lihua Xing, Carl E. Locke Jr., and Y. Paul Virmani	SeptOct. 2013	577
corrosion	Flexural Behavior and Design of Steel-GFRP Reinforced Concrete Beams	110-M62	Mohamed A. Safan	NovDec. 2013	677
corrosion inhibitor	Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance	110-M53	Matthew O'Reilly, David Darwin, JoAnn Browning, Lihua Xing, Carl E. Locke Jr., and Y. Paul Virmani	SeptOct. 2013	577
corrosion rate	Study on Electric Flux and Corrosion Rate of Concrete	110-M61	Yue Li, Lei Qiao, and Chao Yan	NovDec. 2013	669
crack detection and characterization	Detection and Characterization of Early- Age Thermal Cracks in High-Performance Concrete	110-M28	David Hubbell and Branko Glisic	May-June 2013	323
crack pattern	Behavior of Self-Consolidating Rubberized Concrete Beam-Column Joints	110-M64	N. Ganesan, Bharati Raj, and A. P. Shashikala	NovDec. 2013	697
crack propagation	Contribution of Specimen Surface Friction to Size Effect and Rupture Behavior of Concrete	110-M16	Raphael Kampmann, Michelle Roddenberry, and W. Virgil Ping	MarApr. 2013	169
crack width	Water Permeability of Reinforced Concrete Subjected to Cyclic Tensile Loading	110-M08	Clélia Desmettre and Jean- Philippe Charron	JanFeb. 2013	79
crack width and spacing	Effect of Secondary Cracks for Cracking Analysis of Reinforced Concrete Tie	110-M20	Pier Giorgio Debernardi, Matteo Guiglia, and Maurizio Taliano	MarApr. 2013	207
cracking	Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance	110-M53	Matthew O'Reilly, David Darwin, JoAnn Browning, Lihua Xing, Carl E. Locke Jr., and Y. Paul Virmani	SeptOct. 2013	577
cracking	Effect of Microcracking on Frost Durability of High-Volume-Fly-Ash- and Slag-Incorporated Engineered Cementitious Composites	110-M21	Erdoğan Özbay, Mustafa Şahmaran, Mohamed Lachemi, and Hasan Erhan Yücel	May-June 2013	259
cracking	Effect of Secondary Cracks for Cracking Analysis of Reinforced Concrete Tie	110-M20	Pier Giorgio Debernardi, Matteo Guiglia, and Maurizio Taliano	MarApr. 2013	207

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
cracking	Flexural Behavior and Design of Steel-GFRP Reinforced Concrete Beams	110-M62	Mohamed A. Safan	NovDec. 2013	677
cracking	Tension Stiffening and Cracking of Hybrid Fiber-Reinforced Concrete	110-M66	N. Ganesan, P. V. Indira, and M. V. Sabeena	NovDec. 2013	715
cracking potential	Characterizing Cracking Potential of Cementitious Mixtures Based on Shrinkage and Humidity Drop Rate	110-M39	Ya Wei and Will Hansen	July-Aug. 2013	433
creep	Creep Rheological Models for Recycled Aggregate Concrete	110-M11	Gholamreza Fathifazl and A. G. Razaqpur	MarApr. 2013	115
C-S-H	Feasibility Study of Using Raman Spectroscopy to Detect Hydration in Wet Pastes	110-M55	Fengjuan Liu and Zhihui Sun	NovDec. 2013	611
cumulative distribution function	Resistance Model of Lightweight Concrete Members	110-M10	Anna M. Rakoczy and Andrzej S. Nowak	JanFeb. 2013	99
curing	Effect of Curing Water Availability and Composition on Cement Hydration	110-M27	Md Sarwar Siddiqui, Wesley Nyberg, Wilson Smith, Brett Blackwell, and Kyle A. Riding	May-June 2013	315
curing	Effect of Initial Curing on Carbonation of Lightweight Concrete Masonry Units	110-M40	Hilal El-Hassan, Yixin Shao, and Zaid Ghouleh	July-Aug. 2013	441
cyclic loading	Water Permeability of Reinforced Concrete Subjected to Cyclic Tensile Loading	110-M08	Clélia Desmettre and Jean- Philippe Charron	JanFeb. 2013	79
damping	Mechanical Energy Dissipation Using Cement-Based Materials with Admixtures	110-M23	Po-Hsiu Chen and D. D. L. Chung	May-June 2013	279
defect detection	Embedded Piezoelectric Sensors for Health Monitoring of Concrete Structures	110-M14	Bo Hu, Tribikram Kundu, Wolfgang Grill, Bingkang Liu, and Vahab Toufigh	MarApr. 2013	149
deflection	Flexural Behavior and Design of Steel-GFRP Reinforced Concrete Beams	110-M62	Mohamed A. Safan	NovDec. 2013	677
deformation behavior	Strain Measurement of Steel Fiber-Reinforced Concrete under Multiaxial Loads with Fiber Bragg Grating	110-M06	Robert Ritter and Manfred Curbach	JanFeb. 2013	57
defuzzification	Five-Layer Fuzzy Inference System to Design a Concrete Mixture, Based on ACI Method	110-M57	Sunil Y. Kute and Rajeev S. Kale	NovDec. 2013	629
dehydrated cement paste (DCP)	Using Dehydrated Cement Paste as New Type of Cement Additive	110-M35	Rui Yu, Zhonghe Shui, and Jun Dong	July-Aug. 2013	395
delayed ettringite formation	Novel Cementitious Binder Incorporating Cement Kiln Dust: Strength and Durability	110-M25	Piyush Chaunsali and Sulapha Peethamparan	May-June 2013	297
dielectric properties	Determining Supplementary Admixture Content in Fresh Concrete with Ground- Penetrating Radar	110-M54	Wei Chen and Peiliang Shen	SeptOct. 2013	587
diffusion	Apparent Diffusivity Model for Concrete Containing Supplementary Cementitious Materials	110-M65	Kyle A. Riding, Michael D. A. Thomas, and Kevin J. Folliard	NovDec. 2013	705
diffusion	Evaluation of Concrete Drying Shrinkage Related to Moisture Loss	110-M22	Reza Abbasnia, Mohammad Shekarchi, and Jamal Ahmadi	May-June 2013	269
diffusion	Viscosity Modifiers to Enhance Concrete Performance	110-M44	Dale P. Bentz, Kenneth A. Snyder, Max A. Peltz, Karthik Obla, and Haejin Kim	SeptOct. 2013	495
direct tension test	Development of Direct Tension Test Method for Ultra-High-Performance Fiber-Reinforced Concrete	110-M17	Benjamin A. Graybeal and Florent Baby	MarApr. 2013	177
drying	Evaluation of Concrete Drying Shrinkage Related to Moisture Loss	110-M22	Reza Abbasnia, Mohammad Shekarchi, and Jamal Ahmadi	May-June 2013	269
durability	Aggregate Passivation: Lithium Hydroxide Aggregate Treatment to Suppress Alkali-Silica Reaction	110-M52	Craig W. Hargis, Maria C. G. Juenger, and Paulo J. M. Monteiro	SeptOct. 2013	567
durability	Durability Properties of Sprayed Engineered Cementitious Composite	110-M45	Yi-Wei Lin, Allan Scott, Liam Wotherspoon, and Jason M. Ingham	SeptOct. 2013	503
durability	Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance	110-M53	Matthew O'Reilly, David Darwin, JoAnn Browning, Lihua Xing, Carl E. Locke Jr., and Y. Paul Virmani	SeptOct. 2013	577

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
durability	Effect of Leaching on pH of Surrounding Water	110-M24	David W. Law and Jane Evans	May-June 2013	291
durability	Factors That Affect Color Loss of Concrete Paving Blocks	110-M05	Federica Lollini and Luca Bertolini	JanFeb. 2013	45
durability	Flexural Behavior and Design of Steel-GFRP Reinforced Concrete Beams	110-M62	Mohamed A. Safan	NovDec. 2013	677
durability	Shrinkage-Reducing Admixture: Effects on Durability of High-Strength Concrete	110-M32	Anne N. M. Lopes, Eugênia F. Silva, Denise C. C. Dal Molin, and Romildo D. Toledo Filho	July-Aug. 2013	365
durability	Twenty-Year Field Evaluation of Alkali-Silica Reaction Mitigation	110-M49	R. Doug Hooton, Chris Rogers, Carole Anne MacDonald, and Terry Ramlochan	SeptOct. 2013	539
durability	Viscosity Modifiers to Enhance Concrete Performance	110-M44	Dale P. Bentz, Kenneth A. Snyder, Max A. Peltz, Karthik Obla, and Haejin Kim	SeptOct. 2013	495
early age	Quantifying Stress Development and Remaining Stress Capacity in Restrained, Internally Cured Mortars	110-M01	J. L. Schlitter, D. P. Bentz, and W. J. Weiss	JanFeb. 2013	3
early hydration	Effect of Curing Water Availability and Composition on Cement Hydration	110-M27	Md Sarwar Siddiqui, Wesley Nyberg, Wilson Smith, Brett Blackwell, and Kyle A. Riding	May-June 2013	315
early-age thermal loads	Detection and Characterization of Early- Age Thermal Cracks in High-Performance Concrete	110-M28	David Hubbell and Branko Glisic	May-June 2013	323
electric arc furnace slag	Experimental Behavior of Reinforced Concrete Beams with Electric Arc Furnace Slag as Recycled Aggregate	110-M19	Carlo Pellegrino and Flora Faleschini	MarApr. 2013	197
electric flux	Study on Electric Flux and Corrosion Rate of Concrete	110-M61	Yue Li, Lei Qiao, and Chao Yan	NovDec. 2013	669
end confinement	Contribution of Specimen Surface Friction to Size Effect and Rupture Behavior of Concrete	110-M16	Raphael Kampmann, Michelle Roddenberry, and W. Virgil Ping	MarApr. 2013	169
energy dissipation	Mechanical Energy Dissipation Using Cement-Based Materials with Admixtures	110-M23	Po-Hsiu Chen and D. D. L. Chung	May-June 2013	279
engineered cementitious composite	Durability Properties of Sprayed Engineered Cementitious Composite	110-M45	Yi-Wei Lin, Allan Scott, Liam Wotherspoon, and Jason M. Ingham	SeptOct. 2013	503
engineered cementitious composites	Composite Properties of High-Strength, High- Ductility Concrete	110-M37	Ravi Ranade, Victor C. Li, Michael D. Stults, William F. Heard, and Todd S. Rushing	July-Aug. 2013	413
engineered cementitious composites	Effect of Microcracking on Frost Durability of High-Volume-Fly-Ash- and Slag-Incorporated Engineered Cementitious Composites	110-M21	Erdoğan Özbay, Mustafa Şahmaran, Mohamed Lachemi, and Hasan Erhan Yücel	May-June 2013	259
engineered cementitious composites (ECCs)	Self-Healing of Microcracks in High- Volume Fly-Ash-Incorporated Engineered Cementitious Composites	110-M04	Erdoğan Özbay, Mustafa Şahmaran, Mohamed Lachemi, and Hasan Erhan Yücel	JanFeb. 2013	33
environmental exposure	Factors That Affect Color Loss of Concrete Paving Blocks	110-M05	Federica Lollini and Luca Bertolini	JanFeb. 2013	45
equivalent bond strength	Effect of Ultra-High-Performance Concrete on Pullout Behavior of High-Strength Brass- Coated Straight Steel Fibers	110-M41	Kay Wille and Antoine E. Naaman	July-Aug. 2013	451
ettringite	Feasibility Study of Using Raman Spectroscopy to Detect Hydration in Wet Pastes	110-M55	Fengjuan Liu and Zhihui Sun	NovDec. 2013	611
evaluation and modification	Using Dehydrated Cement Paste as New Type of Cement Additive	110-M35	Rui Yu, Zhonghe Shui, and Jun Dong	July-Aug. 2013	395
expanded polystyrene (EPS) concrete	Fracture Properties of Concrete Containing Expanded Polystyrene Aggregate Replacement	110-M50	Matthew Trussoni, Carol D. Hays, and Ronald F. Zollo	SeptOct. 2013	549
expansion	Aggregate Passivation: Lithium Hydroxide Aggregate Treatment to Suppress Alkali-Silica Reaction	110-M52	Craig W. Hargis, Maria C. G. Juenger, and Paulo J. M. Monteiro	SeptOct. 2013	567
experimental modal analysis	Detection of Internal Defects in Concrete Members Using Global Vibration Characteristics	110-M48	H. Sezer Atamturktur, Christopher R. Gilligan, and Kelly A. Salyards	SeptOct. 2013	529

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
experimental modal analysis	Temperature and Frequency Effects on Properties of Polymer-Modified Concrete	110-M18	Hal Amick and Paulo J. M. Monteiro	MarApr. 2013	187
exposure conditions	Self-Healing of Microcracks in High- Volume Fly-Ash-Incorporated Engineered Cementitious Composites	110-M04	Erdoğan Özbay, Mustafa Şahmaran, Mohamed Lachemi, and Hasan Erhan Yücel	JanFeb. 2013	33
fading color	Factors That Affect Color Loss of Concrete Paving Blocks	110-M05	Federica Lollini and Luca Bertolini	JanFeb. 2013	45
fatigue	Fatigue-Life Prediction of Full-Scale Concrete Pavement Overlay over Flexible Pavement: Super-Accelerated Pavement Testing Application	110-M02	Boo-Hyun Nam, Chul Suh, and Moon C. Won	JanFeb. 2013	13
fatigue loading	Study on Electric Flux and Corrosion Rate of Concrete	110-M61	Yue Li, Lei Qiao, and Chao Yan	NovDec. 2013	669
fiber Bragg grating	Strain Measurement of Steel Fiber-Reinforced Concrete under Multiaxial Loads with Fiber Bragg Grating	110-M06	Robert Ritter and Manfred Curbach	JanFeb. 2013	57
fiber reinforcement	Water Permeability of Reinforced Concrete Subjected to Cyclic Tensile Loading	110-M08	Clélia Desmettre and Jean- Philippe Charron	JanFeb. 2013	79
fiber-optic sensors	Detection and Characterization of Early- Age Thermal Cracks in High-Performance Concrete	110-M28	David Hubbell and Branko Glisic	May-June 2013	323
fiber-reinforced concrete	Tension Stiffening and Cracking of Hybrid Fiber-Reinforced Concrete	110-M66	N. Ganesan, P. V. Indira, and M. V. Sabeena	NovDec. 2013	715
field exposure	Twenty-Year Field Evaluation of Alkali-Silica Reaction Mitigation	110-M49	R. Doug Hooton, Chris Rogers, Carole Anne MacDonald, and Terry Ramlochan	SeptOct. 2013	539
finish	Three-Dimensional Optical Profilometry Analysis of the International Concrete Repair Institute Concrete Surface Profiles (CSPs)	110-M47	Lauren R. Millman and James W. Giancaspro	SeptOct. 2013	519
finite element	Chemo-Mechanical Micromodel for Alkali- Silica Reaction	110-M07	Wiwat Puatatsananon and Victor Saouma	JanFeb. 2013	67
flexural strength	Mechanical Energy Dissipation Using Cement-Based Materials with Admixtures	110-M23	Po-Hsiu Chen and D. D. L. Chung	May-June 2013	279
flexural strength	Sustainable Processing of Cellulose Fiber Cement Composites	110-M26	Parviz Soroushian, Jong-Pil Won, and Maan Hassan	May-June 2013	305
fluidity	Synergistic and Antagonistic Effect of SO ₄ ^{2–} on DispersingPower of Polycarboxylate	110-M58	Ahmad Habbaba, Nadia Zouaoui, and Johann Plank	NovDec. 2013	641
fly ash	Characterization of Fly Ashes for Sulfate Resistance	110-M15	Rajaram Dhole, Michael D. A. Thomas, Kevin J. Folliard, and Thano Drimalas	MarApr. 2013	159
fly ash	Effects of Carbonation on Chloride Penetration in Concrete	110-M51	Myung Kue Lee, Sang Hwa Jung, and Byung Hwan Oh	SeptOct. 2013	559
fly ash	Self-Healing of Microcracks in High- Volume Fly-Ash-Incorporated Engineered Cementitious Composites	110-M04	Erdo an Özbay, Mustafa Şahmaran, Mohamed Lachemi, and Hasan Erhan Yücel	JanFeb. 2013	33
fracture properties	Fracture Properties of Concrete Containing Expanded Polystyrene Aggregate Replacement	110-M50	Matthew Trussoni, Carol D. Hays, and Ronald F. Zollo	SeptOct. 2013	549
fresh concrete mixture	Determining Supplementary Admixture Content in Fresh Concrete with Ground- Penetrating Radar	110-M54	Wei Chen and Peiliang Shen	SeptOct. 2013	587
frost resistance	Effect of Microcracking on Frost Durability of High-Volume-Fly-Ash- and Slag-Incorporated Engineered Cementitious Composites	110-M21	Erdoğan Özbay, Mustafa Şahmaran, Mohamed Lachemi, and Hasan Erhan Yücel	May-June 2013	259
fuzzy inference system	Five-Layer Fuzzy Inference System to Design a Concrete Mixture, Based on ACI Method	110-M57	Sunil Y. Kute and Rajeev S. Kale	NovDec. 2013	629
fuzzy logic	Five-Layer Fuzzy Inference System to Design a Concrete Mixture, Based on ACI Method	110-M57	Sunil Y. Kute and Rajeev S. Kale	NovDec. 2013	629
geometry	Effect of Leaching on pH of Surrounding Water	110-M24	David W. Law and Jane Evans	May-June 2013	291
geopolymer concrete	Alkali-Activated Natural Pozzolan Concrete as New Construction Material	110-M29	Dali Bondar, Cyril J. Lynsdale, and Neil B. Milestone	May-June 2013	331

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
geopolymer concrete	Effect of Plasticizer and Superplasticizer on Rheology of Fly-Ash-Based Geopolymer Concrete	110-M46	Aminul Islam Laskar and Rajan Bhattacharjee	SeptOct. 2013	513
glass fiber- reinforced polymer	Flexural Behavior and Design of Steel-GFRP Reinforced Concrete Beams	110-M62	Mohamed A. Safan	NovDec. 2013	677
graphite	Mechanical Energy Dissipation Using Cement-Based Materials with Admixtures	110-M23	Po-Hsiu Chen and D. D. L. Chung	May-June 2013	279
ground-granulated blast-furnace slag	Unrestrained Short-Term Shrinkage of Calcium-Hydroxide-Based Alkali-Activated Slag Concrete	110-M12	Keun-Hyeok Yang, Ah-Ram Cho, and Jin-Kyu Song	MarApr. 2013	127
ground-penetrating radar	Determining Supplementary Admixture Content in Fresh Concrete with Ground- Penetrating Radar	110-M54	Wei Chen and Peiliang Shen	SeptOct. 2013	587
health monitoring	Acoustic-Emission-Based Characterization of Corrosion Damage in Cracked Concrete with Prestressing Strand	110-M09	Jesé Mangual, Mohamed K. ElBatanouny, Paul Ziehl, and Fabio Matta	JanFeb. 2013	89
high-ductility concrete	Composite Properties of High-Strength, High- Ductility Concrete	110-M37	Ravi Ranade, Victor C. Li, Michael D. Stults, William F. Heard, and Todd S. Rushing	July-Aug. 2013	413
high-ductility concrete	Micromechanics of High-Strength, High- Ductility Concrete	110-M33	Ravi Ranade, Victor C. Li, Michael D. Stults, Todd S. Rushing, Jason Roth, and William F. Heard	July-Aug. 2013	375
high-performance cementitious composite	Composite Properties of High-Strength, High- Ductility Concrete	110-M37	Ravi Ranade, Victor C. Li, Michael D. Stults, William F. Heard, and Todd S. Rushing	July-Aug. 2013	413
high-performance cementitious composite	Micromechanics of High-Strength, High- Ductility Concrete	110-M33	Ravi Ranade, Victor C. Li, Michael D. Stults, Todd S. Rushing, Jason Roth, and William F. Heard	July-Aug. 2013	375
high-performance concrete	Detection and Characterization of Early- Age Thermal Cracks in High-Performance Concrete	110-M28	David Hubbell and Branko Glisic	May-June 2013	323
high-performance concrete	Tension Stiffening and Cracking of Hybrid Fiber-Reinforced Concrete	110-M66	N. Ganesan, P. V. Indira, and M. V. Sabeena	NovDec. 2013	715
high-range water- reducing admixture	Synergistic and Antagonistic Effect of SO ₄ ^{2–} on DispersingPower of Polycarboxylate	110-M58	Ahmad Habbaba, Nadia Zouaoui, and Johann Plank	NovDec. 2013	641
high-speed video	Contribution of Specimen Surface Friction to Size Effect and Rupture Behavior of Concrete	110-M16	Raphael Kampmann, Michelle Roddenberry, and W. Virgil Ping	MarApr. 2013	169
high-strength concrete	Composite Properties of High-Strength, High- Ductility Concrete	110-M37	Ravi Ranade, Victor C. Li, Michael D. Stults, William F. Heard, and Todd S. Rushing	July-Aug. 2013	413
high-strength concrete	Micromechanics of High-Strength, High- Ductility Concrete	110-M33	Ravi Ranade, Victor C. Li, Michael D. Stults, Todd S. Rushing, Jason Roth, and William F. Heard	July-Aug. 2013	375
high-strength concrete	Shrinkage-Reducing Admixture: Effects on Durability of High-Strength Concrete	110-M32	Anne N. M. Lopes, Eugênia F. Silva, Denise C. C. Dal Molin, and Romildo D. Toledo Filho	July-Aug. 2013	365
high-volume fly ash	Impact Resistance of Blast Mitigation Material Using Modified ACI Drop-Weight Impact Test	110-M30	John J. Myers and Matthew Tinsley	May-June 2013	339
humidity	Evaluation of Concrete Drying Shrinkage Related to Moisture Loss	110-M22	Reza Abbasnia, Mohammad Shekarchi, and Jamal Ahmadi	May-June 2013	269
hybrid reinforcement	Flexural Behavior and Design of Steel-GFRP Reinforced Concrete Beams	110-M62	Mohamed A. Safan	NovDec. 2013	677
hydrated skeleton	Self-Restraining Shrinkage Ultra-High- Performance Concrete: Mechanisms and Evidence	110-M31	Ahmed M. Soliman and Moncef L. Nehdi	July-Aug. 2013	355
hydration	Modeling the Effect of Curing Temperature and Pressure on Cement Hydration Kinetics	110-M13	Xueyu Pang, Christian Meyer, Robert Darbe, and Gary P. Funkhouser	MarApr. 2013	137
impact resistance	Impact Resistance of Blast Mitigation Material Using Modified ACI Drop-Weight Impact Test	110-M30	John J. Myers and Matthew Tinsley	May-June 2013	339

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
internal curing	Effect of Curing Water Availability and Composition on Cement Hydration	110-M27	Md Sarwar Siddiqui, Wesley Nyberg, Wilson Smith, Brett Blackwell, and Kyle A. Riding	May-June 2013	315
internal curing	Quantifying Stress Development and Remaining Stress Capacity in Restrained, Internally Cured Mortars	110-M01	J. L. Schlitter, D. P. Bentz, and W. J. Weiss	JanFeb. 2013	3
ionic concentration	Effect of Curing Water Availability and Composition on Cement Hydration	110-M27	Md Sarwar Siddiqui, Wesley Nyberg, Wilson Smith, Brett Blackwell, and Kyle A. Riding	May-June 2013	315
kinetics	Modeling the Effect of Curing Temperature and Pressure on Cement Hydration Kinetics	110-M13	Xueyu Pang, Christian Meyer, Robert Darbe, and Gary P. Funkhouser	MarApr. 2013	137
leaching	Effect of Leaching on pH of Surrounding Water	110-M24	David W. Law and Jane Evans	May-June 2013	291
lightweight aggregate	Quantifying Stress Development and Remaining Stress Capacity in Restrained, Internally Cured Mortars	110-M01	J. L. Schlitter, D. P. Bentz, and W. J. Weiss	JanFeb. 2013	3
lightweight aggregate	Reversible Shrinkage of Concrete Made with Recycled Concrete Aggregate and Other Aggregate Types	110-M38	Rita E. Lederle and Jacob E. Hiller	July-Aug. 2013	423
lightweight concrete	Resistance Model of Lightweight Concrete Members	110-M10	Anna M. Rakoczy and Andrzej S. Nowak	JanFeb. 2013	99
limestone powder	Effects of Sand Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar	110-M03	Virak Han, Soty Ros, and Hiroshi Shima	JanFeb. 2013	23
linguistic variables	Five-Layer Fuzzy Inference System to Design a Concrete Mixture, Based on ACI Method	110-M57	Sunil Y. Kute and Rajeev S. Kale	NovDec. 2013	629
lithium compounds	Aggregate Passivation: Lithium Hydroxide Aggregate Treatment to Suppress Alkali-Silica Reaction	110-M52	Craig W. Hargis, Maria C. G. Juenger, and Paulo J. M. Monteiro	SeptOct. 2013	567
long-term performance	Apparent Diffusivity Model for Concrete Containing Supplementary Cementitious Materials	110-M65	Kyle A. Riding, Michael D. A. Thomas, and Kevin J. Folliard	NovDec. 2013	705
lubricating layer	Prediction of Concrete Pumping: Part I— Development of New Tribometer for Analysis of Lubricating Layer	110-M59	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	647
lubricating layer	Prediction of Concrete Pumping: Part II—Analytical Prediction and Experimental Verification	110-M60	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	657
macromodel	Chemo-Mechanical Micromodel for Alkali- Silica Reaction	110-M07	Wiwat Puatatsananon and Victor Saouma	JanFeb. 2013	67
membership function	Five-Layer Fuzzy Inference System to Design a Concrete Mixture, Based on ACI Method	110-M57	Sunil Y. Kute and Rajeev S. Kale	NovDec. 2013	629
micromechanics	Micromechanics of High-Strength, High- Ductility Concrete	110-M33	Ravi Ranade, Victor C. Li, Michael D. Stults, Todd S. Rushing, Jason Roth, and William F. Heard	July-Aug. 2013	375
micromodel	Chemo-Mechanical Micromodel for Alkali- Silica Reaction	110-M07	Wiwat Puatatsananon and Victor Saouma	JanFeb. 2013	67
microstructure	Engineering Properties of Reactive Powder Concrete without Portland Cement	110-M56	Serdar Aydın and Bülent Baradan	NovDec. 2013	619
mid-term evolution	New Views on Effect of Recycled Aggregates on Concrete Compressive Strength	110-M63	Vivian A. Ulloa, Emili García- Taengua, María-José Pelufo, Alberto Domingo, and Pedro Serna	NovDec. 2013	687
mineral admixture	Effect of Microcracking on Frost Durability of High-Volume-Fly-Ash- and Slag-Incorporated Engineered Cementitious Composites	110-M21	Erdo an Özbay, Mustafa Şahmaran, Mohamed Lachemi, and Hasan Erhan Yücel	May-June 2013	259
mineralogy	Characterization of Fly Ashes for Sulfate Resistance	110-M15	Rajaram Dhole, Michael D. A. Thomas, Kevin J. Folliard, and Thano Drimalas	MarApr. 2013	159
mixture design	Design of Concrete Mixtures with Recycled Concrete Aggregates	110-M43	Adam M. Knaack and Yahya C. Kurama	SeptOct. 2013	483
mixture design	Five-Layer Fuzzy Inference System to Design a Concrete Mixture, Based on ACI Method	110-M57	Sunil Y. Kute and Rajeev S. Kale	NovDec. 2013	629

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
mixture proportioning	Creep Rheological Models for Recycled Aggregate Concrete	110-M11	Gholamreza Fathifazl and A. G. Razaqpur	MarApr. 2013	115
modal damping	Temperature and Frequency Effects on Properties of Polymer-Modified Concrete	110-M18	Hal Amick and Paulo J. M. Monteiro	MarApr. 2013	187
modeling	Modeling the Effect of Curing Temperature and Pressure on Cement Hydration Kinetics	110-M13	Xueyu Pang, Christian Meyer, Robert Darbe, and Gary P. Funkhouser	MarApr. 2013	137
modulus of elasticity	Design of Concrete Mixtures with Recycled Concrete Aggregates	110-M43	Adam M. Knaack and Yahya C. Kurama	SeptOct. 2013	483
mortar	Design of Concrete Mixtures with Recycled Concrete Aggregates	110-M43	Adam M. Knaack and Yahya C. Kurama	SeptOct. 2013	483
mortar	Effects of Sand Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar	110-M03	Virak Han, Soty Ros, and Hiroshi Shima	JanFeb. 2013	23
mortar	Mechanical Energy Dissipation Using Cement-Based Materials with Admixtures	110-M23	Po-Hsiu Chen and D. D. L. Chung	May-June 2013	279
mortar	Quantifying Stress Development and Remaining Stress Capacity in Restrained, Internally Cured Mortars	110-M01	J. L. Schlitter, D. P. Bentz, and W. J. Weiss	JanFeb. 2013	3
multiaxial	Strain Measurement of Steel Fiber-Reinforced Concrete under Multiaxial Loads with Fiber Bragg Grating	110-M06	Robert Ritter and Manfred Curbach	JanFeb. 2013	57
natural pozzolan	Alkali-Activated Natural Pozzolan Concrete as New Construction Material	110-M29	Dali Bondar, Cyril J. Lynsdale, and Neil B. Milestone	May-June 2013	331
new additive	Using Dehydrated Cement Paste as New Type of Cement Additive	110-M35	Rui Yu, Zhonghe Shui, and Jun Dong	July-Aug. 2013	395
nondestructive evaluation	Acoustic-Emission-Based Characterization of Corrosion Damage in Cracked Concrete with Prestressing Strand	110-M09	Jesé Mangual, Mohamed K. ElBatanouny, Paul Ziehl, and Fabio Matta	JanFeb. 2013	89
nondestructive testing and evaluation	Detection of Internal Defects in Concrete Members Using Global Vibration Characteristics	110-M48	H. Sezer Atamturktur, Christopher R. Gilligan, and Kelly A. Salyards	SeptOct. 2013	529
oil well cement	Modeling the Effect of Curing Temperature and Pressure on Cement Hydration Kinetics	110-M13	Xueyu Pang, Christian Meyer, Robert Darbe, and Gary P. Funkhouser	MarApr. 2013	137
passive internal restraint	Self-Restraining Shrinkage Ultra-High- Performance Concrete: Mechanisms and Evidence	110-M31	Ahmed M. Soliman and Moncef L. Nehdi	July-Aug. 2013	355
рН	Effect of Leaching on pH of Surrounding Water	110-M24	David W. Law and Jane Evans	May-June 2013	291
piezoelectric material	Embedded Piezoelectric Sensors for Health Monitoring of Concrete Structures	110-M14	Bo Hu, Tribikram Kundu, Wolfgang Grill, Bingkang Liu, and Vahab Toufigh	MarApr. 2013	149
plastic viscosity	Effect of Plasticizer and Superplasticizer on Rheology of Fly-Ash-Based Geopolymer Concrete	110-M46	Aminul Islam Laskar and Rajan Bhattacharjee	SeptOct. 2013	513
polycarboxylate	Synergistic and Antagonistic Effect of SO ₄ ^{2–} on DispersingPower of Polycarboxylate	110-M58	Ahmad Habbaba, Nadia Zouaoui, and Johann Plank	NovDec. 2013	641
polymer-modified concrete	Temperature and Frequency Effects on Properties of Polymer-Modified Concrete	110-M18	Hal Amick and Paulo J. M. Monteiro	MarApr. 2013	187
polypropylene fibers	Tension Stiffening and Cracking of Hybrid Fiber-Reinforced Concrete	110-M66	N. Ganesan, P. V. Indira, and M. V. Sabeena	NovDec. 2013	715
pore solution	Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance	110-M53	Matthew O'Reilly, David Darwin, JoAnn Browning, Lihua Xing, Carl E. Locke Jr., and Y. Paul Virmani	SeptOct. 2013	577
pore solution	Effect of Curing Water Availability and Composition on Cement Hydration	110-M27	Md Sarwar Siddiqui, Wesley Nyberg, Wilson Smith, Brett Blackwell, and Kyle A. Riding	May-June 2013	315
portland cement	Feasibility Study of Using Raman Spectroscopy to Detect Hydration in Wet Pastes	110-M55	Fengjuan Liu and Zhihui Sun	NovDec. 2013	611

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
prediction	Prediction of Concrete Pumping: Part I— Development of New Tribometer for Analysis of Lubricating Layer	110-M59	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	647
prediction	Prediction of Concrete Pumping: Part II—Analytical Prediction and Experimental Verification	110-M60	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	657
pressure	Modeling the Effect of Curing Temperature and Pressure on Cement Hydration Kinetics	110-M13	Xueyu Pang, Christian Meyer, Robert Darbe, and Gary P. Funkhouser	MarApr. 2013	137
prestressed concrete	Acoustic-Emission-Based Characterization of Corrosion Damage in Cracked Concrete with Prestressing Strand	110-M09	Jesé Mangual, Mohamed K. ElBatanouny, Paul Ziehl, and Fabio Matta	JanFeb. 2013	89
pumping mechanism	Prediction of Concrete Pumping: Part II—Analytical Prediction and Experimental Verification	110-M60	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	657
quality assurance	Assessment of Stability Test Methods for Self- Consolidating Concrete	110-M34	Samuel D. Keske, Anton K. Schindler, and Robert W. Barnes	July-Aug. 2013	385
quality control	Determining Supplementary Admixture Content in Fresh Concrete with Ground- Penetrating Radar	110-M54	Wei Chen and Peiliang Shen	SeptOct. 2013	587
Raman spectroscopy	Feasibility Study of Using Raman Spectroscopy to Detect Hydration in Wet Pastes	110-M55	Fengjuan Liu and Zhihui Sun	NovDec. 2013	611
reactive powder concrete	Dynamic Properties of Reactive Powder Concrete Subjected to Repeated Impacts	110-M42	Jianzhong Lai, Wei Sun, Sheng Xu, and Chunmei Yang	July-Aug. 2013	463
reactive powder concrete	Engineering Properties of Reactive Powder Concrete without Portland Cement	110-M56	Serdar Aydın and Bülent Baradan	NovDec. 2013	619
recycled aggregates	New Views on Effect of Recycled Aggregates on Concrete Compressive Strength	110-M63	Vivian A. Ulloa, Emili García- Taengua, María-José Pelufo, Alberto Domingo, and Pedro Serna	NovDec. 2013	687
recycled concrete	Creep Rheological Models for Recycled Aggregate Concrete	110-M11	Gholamreza Fathifazl and A. G. Razaqpur	MarApr. 2013	115
recycled concrete aggregate	Design of Concrete Mixtures with Recycled Concrete Aggregates	110-M43	Adam M. Knaack and Yahya C. Kurama	SeptOct. 2013	483
recycled concrete aggregate	Reversible Shrinkage of Concrete Made with Recycled Concrete Aggregate and Other Aggregate Types	110-M38	Rita E. Lederle and Jacob E. Hiller	July-Aug. 2013	423
rehabilitation	Three-Dimensional Optical Profilometry Analysis of the International Concrete Repair Institute Concrete Surface Profiles (CSPs)	110-M47	Lauren R. Millman and James W. Giancaspro	SeptOct. 2013	519
reinforced concrete	Effect of Secondary Cracks for Cracking Analysis of Reinforced Concrete Tie	110-M20	Pier Giorgio Debernardi, Matteo Guiglia, and Maurizio Taliano	MarApr. 2013	207
reinforced concrete	Experimental Behavior of Reinforced Concrete Beams with Electric Arc Furnace Slag as Recycled Aggregate	110-M19	Carlo Pellegrino and Flora Faleschini	MarApr. 2013	197
reinforced concrete	Resistance Model of Lightweight Concrete Members	110-M10	Anna M. Rakoczy and Andrzej S. Nowak	JanFeb. 2013	99
reinforced concrete	Water Permeability of Reinforced Concrete Subjected to Cyclic Tensile Loading	110-M08	Clélia Desmettre and Jean- Philippe Charron	JanFeb. 2013	79
repair	Durability Properties of Sprayed Engineered Cementitious Composite	110-M45	Yi-Wei Lin, Allan Scott, Liam Wotherspoon, and Jason M. Ingham	SeptOct. 2013	503
repair	Three-Dimensional Optical Profilometry Analysis of the International Concrete Repair Institute Concrete Surface Profiles (CSPs)	110-M47	Lauren R. Millman and James W. Giancaspro	SeptOct. 2013	519
repeated impact	Dynamic Properties of Reactive Powder Concrete Subjected to Repeated Impacts	110-M42	Jianzhong Lai, Wei Sun, Sheng Xu, and Chunmei Yang	July-Aug. 2013	463
residual stress	Quantifying Stress Development and Remaining Stress Capacity in Restrained, Internally Cured Mortars	110-M01	J. L. Schlitter, D. P. Bentz, and W. J. Weiss	JanFeb. 2013	3
restoration	Three-Dimensional Optical Profilometry Analysis of the International Concrete Repair Institute Concrete Surface Profiles (CSPs)	110-M47	Lauren R. Millman and James W. Giancaspro	SeptOct. 2013	519

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
restrained shrinkage ring test	Quantifying Stress Development and Remaining Stress Capacity in Restrained, Internally Cured Mortars	110-M01	J. L. Schlitter, D. P. Bentz, and W. J. Weiss	JanFeb. 2013	3
restrained shrinkage stress	Characterizing Cracking Potential of Cementitious Mixtures Based on Shrinkage and Humidity Drop Rate	110-M39	Ya Wei and Will Hansen	July-Aug. 2013	433
reversible shrinkage	Reversible Shrinkage of Concrete Made with Recycled Concrete Aggregate and Other Aggregate Types	110-M38	Rita E. Lederle and Jacob E. Hiller	July-Aug. 2013	423
RH drop rate	Characterizing Cracking Potential of Cementitious Mixtures Based on Shrinkage and Humidity Drop Rate	110-M39	Ya Wei and Will Hansen	July-Aug. 2013	433
rheological modeling	Creep Rheological Models for Recycled Aggregate Concrete	110-M11	Gholamreza Fathifazl and A. G. Razaqpur	MarApr. 2013	115
rheological properties	Prediction of Concrete Pumping: Part I— Development of New Tribometer for Analysis of Lubricating Layer	110-M59	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	647
rheological properties	Prediction of Concrete Pumping: Part II—Analytical Prediction and Experimental Verification	110-M60	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	657
rheology	Effect of Plasticizer and Superplasticizer on Rheology of Fly-Ash-Based Geopolymer Concrete	110-M46	Aminul Islam Laskar and Rajan Bhattacharjee	SeptOct. 2013	513
salt scaling resistance	Twenty-Year Field Evaluation of Alkali-Silica Reaction Mitigation	110-M49	R. Doug Hooton, Chris Rogers, Carole Anne MacDonald, and Terry Ramlochan	SeptOct. 2013	539
sand blasting	Three-Dimensional Optical Profilometry Analysis of the International Concrete Repair Institute Concrete Surface Profiles (CSPs)	110-M47	Lauren R. Millman and James W. Giancaspro	SeptOct. 2013	519
sand content	Effects of Sand Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar	110-M03	Virak Han, Soty Ros, and Hiroshi Shima	JanFeb. 2013	23
segregation	Assessment of Stability Test Methods for Self- Consolidating Concrete	110-M34	Samuel D. Keske, Anton K. Schindler, and Robert W. Barnes	July-Aug. 2013	385
self-consolidating concrete	Behavior of Self-Consolidating Rubberized Concrete Beam-Column Joints	110-M64	N. Ganesan, Bharati Raj, and A. P. Shashikala	NovDec. 2013	697
self-healing	Self-Healing of Microcracks in High- Volume Fly-Ash-Incorporated Engineered Cementitious Composites	110-M04	Erdo an Özbay, Mustafa Şahmaran, Mohamed Lachemi, and Hasan Erhan Yücel	JanFeb. 2013	33
self-healing	Water Permeability of Reinforced Concrete Subjected to Cyclic Tensile Loading	110-M08	Clélia Desmettre and Jean- Philippe Charron	JanFeb. 2013	79
service life	Viscosity Modifiers to Enhance Concrete Performance	110-M44	Dale P. Bentz, Kenneth A. Snyder, Max A. Peltz, Karthik Obla, and Haejin Kim	SeptOct. 2013	495
shape effect	Contribution of Specimen Surface Friction to Size Effect and Rupture Behavior of Concrete	110-M16	Raphael Kampmann, Michelle Roddenberry, and W. Virgil Ping	MarApr. 2013	169
shear	Experimental Behavior of Reinforced Concrete Beams with Electric Arc Furnace Slag as Recycled Aggregate	110-M19	Carlo Pellegrino and Flora Faleschini	MarApr. 2013	197
shredded rubber	Behavior of Self-Consolidating Rubberized Concrete Beam-Column Joints	110-M64	N. Ganesan, Bharati Raj, and A. P. Shashikala	NovDec. 2013	697
shrinkage	Evaluation of Concrete Drying Shrinkage Related to Moisture Loss	110-M22	Reza Abbasnia, Mohammad Shekarchi, and Jamal Ahmadi	May-June 2013	269
shrinkage	Quantifying Stress Development and Remaining Stress Capacity in Restrained, Internally Cured Mortars	110-M01	J. L. Schlitter, D. P. Bentz, and W. J. Weiss	JanFeb. 2013	3
shrinkage	Self-Restraining Shrinkage Ultra-High- Performance Concrete: Mechanisms and Evidence	110-M31	Ahmed M. Soliman and Moncef L. Nehdi	July-Aug. 2013	355
shrinkage	Unrestrained Short-Term Shrinkage of Calcium-Hydroxide-Based Alkali-Activated Slag Concrete	110-M12	Keun-Hyeok Yang, Ah-Ram Cho, and Jin-Kyu Song	MarApr. 2013	127
shrinkage factor	Evaluation of Concrete Drying Shrinkage Related to Moisture Loss	110-M22	Reza Abbasnia, Mohammad Shekarchi, and Jamal Ahmadi	May-June 2013	269

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
shrinkage rate	Characterizing Cracking Potential of Cementitious Mixtures Based on Shrinkage and Humidity Drop Rate	110-M39	Ya Wei and Will Hansen	July-Aug. 2013	433
shrinkage-reducing admixture	Shrinkage-Reducing Admixture: Effects on Durability of High-Strength Concrete	110-M32	Anne N. M. Lopes, Eugênia F. Silva, Denise C. C. Dal Molin, and Romildo D. Toledo Filho	July-Aug. 2013	365
silica fume	Mechanical Energy Dissipation Using Cement-Based Materials with Admixtures	110-M23	Po-Hsiu Chen and D. D. L. Chung	May-June 2013	279
single-fiber pullout	Effect of Ultra-High-Performance Concrete on Pullout Behavior of High-Strength Brass- Coated Straight Steel Fibers	110-M41	Kay Wille and Antoine E. Naaman	July-Aug. 2013	451
slab	Resistance Model of Lightweight Concrete Members	110-M10	Anna M. Rakoczy and Andrzej S. Nowak	JanFeb. 2013	99
slump	Design of Concrete Mixtures with Recycled Concrete Aggregates	110-M43	Adam M. Knaack and Yahya C. Kurama	SeptOct. 2013	483
smart aggregate	Embedded Piezoelectric Sensors for Health Monitoring of Concrete Structures	110-M14	Bo Hu, Tribikram Kundu, Wolfgang Grill, Bingkang Liu, and Vahab Toufigh	MarApr. 2013	149
S-N curve	Fatigue-Life Prediction of Full-Scale Concrete Pavement Overlay over Flexible Pavement: Super-Accelerated Pavement Testing Application	110-M02	Boo-Hyun Nam, Chul Suh, and Moon C. Won	JanFeb. 2013	13
sprayed	Durability Properties of Sprayed Engineered Cementitious Composite	110-M45	Yi-Wei Lin, Allan Scott, Liam Wotherspoon, and Jason M. Ingham	SeptOct. 2013	503
stationary dynamic deflectometer	Fatigue-Life Prediction of Full-Scale Concrete Pavement Overlay over Flexible Pavement: Super-Accelerated Pavement Testing Application	110-M02	Boo-Hyun Nam, Chul Suh, and Moon C. Won	JanFeb. 2013	13
statistical inference	Detection of Internal Defects in Concrete Members Using Global Vibration Characteristics	110-M48	H. Sezer Atamturktur, Christopher R. Gilligan, and Kelly A. Salyards	SeptOct. 2013	529
statistics	Contribution of Specimen Surface Friction to Size Effect and Rupture Behavior of Concrete	110-M16	Raphael Kampmann, Michelle Roddenberry, and W. Virgil Ping	MarApr. 2013	169
steam curing	Engineering Properties of Reactive Powder Concrete without Portland Cement	110-M56	Serdar Aydın and Bülent Baradan	NovDec. 2013	619
steel fiber	Simplified Diverse Embedment Model for Steel Fiber-Reinforced Concrete Elements in Tension	110-M36	Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio	July-Aug. 2013	403
steel fiber- reinforced concrete	Simplified Diverse Embedment Model for Steel Fiber-Reinforced Concrete Elements in Tension	110-M36	Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio	July-Aug. 2013	403
steel fibers	Behavior of Self-Consolidating Rubberized Concrete Beam-Column Joints	110-M64	N. Ganesan, Bharati Raj, and A. P. Shashikala	NovDec. 2013	697
steel fibers	Tension Stiffening and Cracking of Hybrid Fiber-Reinforced Concrete	110-M66	N. Ganesan, P. V. Indira, and M. V. Sabeena	NovDec. 2013	715
steel reinforcement	Effect of Corrosion Inhibitors on Concrete Pore Solution Composition and Corrosion Resistance	110-M53	Matthew O'Reilly, David Darwin, JoAnn Browning, Lihua Xing, Carl E. Locke Jr., and Y. Paul Virmani	SeptOct. 2013	577
straight fibers	Effect of Ultra-High-Performance Concrete on Pullout Behavior of High-Strength Brass- Coated Straight Steel Fibers	110-M41	Kay Wille and Antoine E. Naaman	July-Aug. 2013	451
strain measurement	Strain Measurement of Steel Fiber-Reinforced Concrete under Multiaxial Loads with Fiber Bragg Grating	110-M06	Robert Ritter and Manfred Curbach	JanFeb. 2013	57
strength	Viscosity Modifiers to Enhance Concrete Performance	110-M44	Dale P. Bentz, Kenneth A. Snyder, Max A. Peltz, Karthik Obla, and Haejin Kim	SeptOct. 2013	495
stress state	Strain Measurement of Steel Fiber-Reinforced Concrete under Multiaxial Loads with Fiber Bragg Grating	110-M06	Robert Ritter and Manfred Curbach	JanFeb. 2013	57
stress-strain	Dynamic Properties of Reactive Powder Concrete Subjected to Repeated Impacts	110-M42	Jianzhong Lai, Wei Sun, Sheng Xu, and Chunmei Yang	July-Aug. 2013	463

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
stress-strain relationship	Strain Measurement of Steel Fiber-Reinforced Concrete under Multiaxial Loads with Fiber Bragg Grating	110-M06	Robert Ritter and Manfred Curbach	JanFeb. 2013	57
structural health monitoring	Detection and Characterization of Early- Age Thermal Cracks in High-Performance Concrete	110-M28	David Hubbell and Branko Glisic	May-June 2013	323
structural vibration	Temperature and Frequency Effects on Properties of Polymer-Modified Concrete	110-M18	Hal Amick and Paulo J. M. Monteiro	MarApr. 2013	187
substrate	Three-Dimensional Optical Profilometry Analysis of the International Concrete Repair Institute Concrete Surface Profiles (CSPs)	110-M47	Lauren R. Millman and James W. Giancaspro	SeptOct. 2013	519
sulfate corrosion	Study on Electric Flux and Corrosion Rate of Concrete	110-M61	Yue Li, Lei Qiao, and Chao Yan	NovDec. 2013	669
sulfate resistance	Characterization of Fly Ashes for Sulfate Resistance	110-M15	Rajaram Dhole, Michael D. A. Thomas, Kevin J. Folliard, and Thano Drimalas	MarApr. 2013	159
super-accelerated pavement testing	Fatigue-Life Prediction of Full-Scale Concrete Pavement Overlay over Flexible Pavement: Super-Accelerated Pavement Testing Application	110-M02	Boo-Hyun Nam, Chul Suh, and Moon C. Won	JanFeb. 2013	13
superplasticizer	Effect of Plasticizer and Superplasticizer on Rheology of Fly-Ash-Based Geopolymer Concrete	110-M46	Aminul Islam Laskar and Rajan Bhattacharjee	SeptOct. 2013	513
superplasticizer	Effects of Sand Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar	110-M03	Virak Han, Soty Ros, and Hiroshi Shima	JanFeb. 2013	23
supplementary admixture	Determining Supplementary Admixture Content in Fresh Concrete with Ground- Penetrating Radar	110-M54	Wei Chen and Peiliang Shen	SeptOct. 2013	587
supplementary cementitious materials	Study on Electric Flux and Corrosion Rate of Concrete	110-M61	Yue Li, Lei Qiao, and Chao Yan	NovDec. 2013	669
supplementary cementitious materials	Twenty-Year Field Evaluation of Alkali-Silica Reaction Mitigation	110-M49	R. Doug Hooton, Chris Rogers, Carole Anne MacDonald, and Terry Ramlochan	SeptOct. 2013	539
surface friction	Contribution of Specimen Surface Friction to Size Effect and Rupture Behavior of Concrete	110-M16	Raphael Kampmann, Michelle Roddenberry, and W. Virgil Ping	MarApr. 2013	169
sustainable development	Alkali-Activated Natural Pozzolan Concrete as New Construction Material	110-M29	Dali Bondar, Cyril J. Lynsdale, and Neil B. Milestone	May-June 2013	331
sustainable development	Experimental Behavior of Reinforced Concrete Beams with Electric Arc Furnace Slag as Recycled Aggregate	110-M19	Carlo Pellegrino and Flora Faleschini	MarApr. 2013	197
temperature	Modeling the Effect of Curing Temperature and Pressure on Cement Hydration Kinetics	110-M13	Xueyu Pang, Christian Meyer, Robert Darbe, and Gary P. Funkhouser	MarApr. 2013	137
tensile stress	Simplified Diverse Embedment Model for Steel Fiber-Reinforced Concrete Elements in Tension	110-M36	Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio	July-Aug. 2013	403
tensile stress-strain response	Development of Direct Tension Test Method for Ultra-High-Performance Fiber-Reinforced Concrete	110-M17	Benjamin A. Graybeal and Florent Baby	MarApr. 2013	177
tension stiffening	Tension Stiffening and Cracking of Hybrid Fiber-Reinforced Concrete	110-M66	N. Ganesan, P. V. Indira, and M. V. Sabeena	NovDec. 2013	715
texture	Three-Dimensional Optical Profilometry Analysis of the International Concrete Repair Institute Concrete Surface Profiles (CSPs)	110-M47	Lauren R. Millman and James W. Giancaspro	SeptOct. 2013	519
theoretical strength contribution (TSC)	Using Dehydrated Cement Paste as New Type of Cement Additive	110-M35	Rui Yu, Zhonghe Shui, and Jun Dong	July-Aug. 2013	395
thermal cracking	Quantifying Stress Development and Remaining Stress Capacity in Restrained, Internally Cured Mortars	110-M01	J. L. Schlitter, D. P. Bentz, and W. J. Weiss	JanFeb. 2013	3
thin whitetopping	Fatigue-Life Prediction of Full-Scale Concrete Pavement Overlay over Flexible Pavement: Super-Accelerated Pavement Testing Application	110-M02	Boo-Hyun Nam, Chul Suh, and Moon C. Won	JanFeb. 2013	13

Keywords	Paper Title	Paper No.	Author Names	Month/Year	Page No.
thixotropy	Effect of Plasticizer and Superplasticizer on Rheology of Fly-Ash-Based Geopolymer Concrete	110-M46	Aminul Islam Laskar and Rajan Bhattacharjee	SeptOct. 2013	513
three-point-bend test	Fracture Properties of Concrete Containing Expanded Polystyrene Aggregate Replacement	110-M50	Matthew Trussoni, Carol D. Hays, and Ronald F. Zollo	SeptOct. 2013	549
time function	Unrestrained Short-Term Shrinkage of Calcium-Hydroxide-Based Alkali-Activated Slag Concrete	110-M12	Keun-Hyeok Yang, Ah-Ram Cho, and Jin-Kyu Song	MarApr. 2013	127
top-bar effect	Assessment of Stability Test Methods for Self- Consolidating Concrete	110-M34	Samuel D. Keske, Anton K. Schindler, and Robert W. Barnes	July-Aug. 2013	385
transport properties	Apparent Diffusivity Model for Concrete Containing Supplementary Cementitious Materials	110-M65	Kyle A. Riding, Michael D. A. Thomas, and Kevin J. Folliard	NovDec. 2013	705
tribometer	Prediction of Concrete Pumping: Part I— Development of New Tribometer for Analysis of Lubricating Layer	110-M59	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	647
tribometer	Prediction of Concrete Pumping: Part II—Analytical Prediction and Experimental Verification	110-M60	Seung Hee Kwon, Chan Kyu Park, Jae Hong Jeong, Seon Doo Jo, and Seung Hoon Lee	NovDec. 2013	657
ultra-high- performance concrete (UHPC)	Effect of Ultra-High-Performance Concrete on Pullout Behavior of High-Strength Brass- Coated Straight Steel Fibers	110-M41	Kay Wille and Antoine E. Naaman	July-Aug. 2013	451
ultra- highperformance fiber-reinforced concrete	Development of Direct Tension Test Method for Ultra-High-Performance Fiber-Reinforced Concrete	110-M17	Benjamin A. Graybeal and Florent Baby	MarApr. 2013	177
ultra-high- performance fiber- reinforced concrete (UHP-FRC)	Effect of Ultra-High-Performance Concrete on Pullout Behavior of High-Strength Brass- Coated Straight Steel Fibers	110-M41	Kay Wille and Antoine E. Naaman	July-Aug. 2013	451
ultrasonic pulse velocity	Assessment of Stability Test Methods for Self- Consolidating Concrete	110-M34	Samuel D. Keske, Anton K. Schindler, and Robert W. Barnes	July-Aug. 2013	385
uncertainty quantification	Detection of Internal Defects in Concrete Members Using Global Vibration Characteristics	110-M48	H. Sezer Atamturktur, Christopher R. Gilligan, and Kelly A. Salyards	SeptOct. 2013	529
variability	New Views on Effect of Recycled Aggregates on Concrete Compressive Strength	110-M63	Vivian A. Ulloa, Emili García- Taengua, María-José Pelufo, Alberto Domingo, and Pedro Serna	NovDec. 2013	687
viscosity	Viscosity Modifiers to Enhance Concrete Performance	110-M44	Dale P. Bentz, Kenneth A. Snyder, Max A. Peltz, Karthik Obla, and Haejin Kim	SeptOct. 2013	495
volume/surface area	Effect of Leaching on pH of Surrounding Water	110-M24	David W. Law and Jane Evans	May-June 2013	291
water permeability	Water Permeability of Reinforced Concrete Subjected to Cyclic Tensile Loading	110-M08	Clélia Desmettre and Jean- Philippe Charron	JanFeb. 2013	79
wear	Factors That Affect Color Loss of Concrete Paving Blocks	110-M05	Federica Lollini and Luca Bertolini	JanFeb. 2013	45
wedge-splitting test	Fracture Properties of Concrete Containing Expanded Polystyrene Aggregate Replacement	110-M50	Matthew Trussoni, Carol D. Hays, and Ronald F. Zollo	SeptOct. 2013	549
wood fiber	Impact Resistance of Blast Mitigation Material Using Modified ACI Drop-Weight Impact Test	110-M30	John J. Myers and Matthew Tinsley	May-June 2013	339
workability	Design of Concrete Mixtures with Recycled Concrete Aggregates	110-M43	Adam M. Knaack and Yahya C. Kurama	SeptOct. 2013	483
yield stress	Effect of Plasticizer and Superplasticizer on Rheology of Fly-Ash-Based Geopolymer Concrete	110-M46	Aminul Islam Laskar and Rajan Bhattacharjee	SeptOct. 2013	513
zeta potential	Synergistic and Antagonistic Effect of SO_4^{2-} on DispersingPower of Polycarboxylate	110-M58	Ahmad Habbaba, Nadia Zouaoui, and Johann Plank	NovDec. 2013	641