ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 496 Abstracts search results

Document: 

SP-360_41

Date: 

March 1, 2024

Author(s):

Yasser M. Selmy, Amr E. Abdallah, and Ehab F. El-Salakawy

Publication:

Symposium Papers

Volume:

360

Abstract:

The seismic performance of reinforced concrete (RC) structures relies on their ability to dissipate earthquake-induced energy through hysteric behavior. Ductility, energy dissipation, and viscous damping are commonly used as performance indicators for steel-RC seismic force-resisting systems (SFRSs). However, while several previous studies have proposed energy-based indices to assess energy dissipation and damping of steel-RC SFRSs, there is a lack of research on fiber-reinforced polymer (FRP)-RC structures. This study examines the applicability of the existing energy dissipation and damping models developed for steel-RC columns to glass FRP (GFRP)-RC ones, where the relationships between energy indices and equivalent viscous damping versus displacement ductility were analyzed for GFRP-RC circular columns from the literature. In addition, prediction models were derived to estimate energy dissipation, viscous damping, and stiffness degradation of such types of columns. It was concluded that similar lower limit values for energy-based ductility parameters of steel-RC columns can be applied to GFRP-RC circular columns, whereas the minimum value and analytical models for the equivalent viscous damping ratio developed for steel-RC columns are not applicable. The derived models for energy indices, viscous damping, and stiffness degradation had an R2 factor of up to 0.99, 0.7, and 0.83, respectively. These findings contribute to the development of seismic design provisions for GFRP-RC structures, addressing the limitations in current codes and standards.

DOI:

10.14359/51740653


Document: 

SP-360_52

Date: 

March 1, 2024

Author(s):

Taylor J. Brodbeck, Giorgio T. Proestos, and Rudolf Seracino

Publication:

Symposium Papers

Volume:

360

Abstract:

This paper presents the current code provisions on strut-and-tie analysis and design of disturbed regions of deep concrete beams reinforced with fiber-reinforced polymer reinforcing (FRP) bars. A literature review of the large-scale experiments published to date is included with a comparison of their results to strut-and-tie predictions. Several published works have recommended modifications to strut-and-tie provisions for FRP reinforced deep beams, and those modifications are summarized within this paper.

DOI:

10.14359/51740664


Document: 

SP-360_51

Date: 

March 1, 2024

Author(s):

Todor Zhelyazov, Eythor Rafn Thorhallsson, Jonas Thor Snaebjornsson

Publication:

Symposium Papers

Volume:

360

Abstract:

The study delves into modeling the interface between Fiber-Reinforced Polymer (FRP) and concrete, with a specific emphasis on simulating the gradual deterioration of bond strength. A model rooted in continuum damage mechanics is integrated with an empirically derived relationship to address interfacial shear failure. Material models are defined for the concrete, the externally bonded FRP reinforcement, and the adhesive layer. These material models are implemented in finite element simulations, replicating experimental setups widely used to investigate the FRP-concrete interface. Key results are reported and discussed. More precisely, the numerically obtained load-slip relationships for the interface and visualizations of the damaged zones in concrete are provided. The numerical results are in close agreement with existing experimental data. The finite element analyses suggest that concrete degradation is not limited to the areas near the adhesive joint. This implies that the adhesive joint could influence the overall behavior of the structural elements, even when debonding failures are prevented by anchorage devices.

DOI:

10.14359/51740663


Document: 

SP-360_39

Date: 

March 1, 2024

Author(s):

Ju-Hyung Kim and Yail J. Kim

Publication:

Symposium Papers

Volume:

360

Abstract:

This paper presents a new methodology for characterizing the failure mode of structural walls reinforced with glass fiber reinforced polymer (GFRP) bars. An analytical model is used to derive a non-dimensional failure determinant function, which is validated against existing test results. The function involves geometric attributes (wall length, wall height, and boundary element size), reinforcement ratios (horizontal and vertical), and material properties (compressive strength of concrete and tensile strength of GFRP bars). According to the determinant function, structural walls fail in flexure when a high aspect ratio is associated with a relatively low reinforcement ratio in the boundary element. The proposed methodology and design recommendations provide valuable guidance for practitioners dealing with GFRP-reinforced concrete walls.

DOI:

10.14359/51740651


Document: 

SP-360_24

Date: 

March 1, 2024

Author(s):

Maria Antonietta Aiello and Luciano Ombres

Publication:

Symposium Papers

Volume:

360

Abstract:

The issues related to deformability, strength and ductility of concrete elements reinforced with FRP (Fiber Reinforced Polymer) bars are critically analyzed and discussed in this paper. The analysis is conducted from an experimental point of view by means of bending tests on concrete beams reinforced with Carbon FRP (CFRP) bars with different amounts of reinforcement, and by an analytical approach aiming to evaluate the deflection and cracking phenomenon (number and width of cracks). The experimental results are compared with the analytical predictions and with predictions developed on the basis of the available codes (ACI, EC2, JSCE). The analysis of the results obtained confirms the most relevant issues of the mechanical behavior of FRP bar-reinforced beams, still worthy of research efforts; some technological and construction solutions that can provide significant improvements are also addressed.

DOI:

10.14359/51740636


12345...>>

Results Per Page