ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 966 Abstracts search results

Document: 

SP-360_41

Date: 

March 1, 2024

Author(s):

Yasser M. Selmy, Amr E. Abdallah, and Ehab F. El-Salakawy

Publication:

Symposium Papers

Volume:

360

Abstract:

The seismic performance of reinforced concrete (RC) structures relies on their ability to dissipate earthquake-induced energy through hysteric behavior. Ductility, energy dissipation, and viscous damping are commonly used as performance indicators for steel-RC seismic force-resisting systems (SFRSs). However, while several previous studies have proposed energy-based indices to assess energy dissipation and damping of steel-RC SFRSs, there is a lack of research on fiber-reinforced polymer (FRP)-RC structures. This study examines the applicability of the existing energy dissipation and damping models developed for steel-RC columns to glass FRP (GFRP)-RC ones, where the relationships between energy indices and equivalent viscous damping versus displacement ductility were analyzed for GFRP-RC circular columns from the literature. In addition, prediction models were derived to estimate energy dissipation, viscous damping, and stiffness degradation of such types of columns. It was concluded that similar lower limit values for energy-based ductility parameters of steel-RC columns can be applied to GFRP-RC circular columns, whereas the minimum value and analytical models for the equivalent viscous damping ratio developed for steel-RC columns are not applicable. The derived models for energy indices, viscous damping, and stiffness degradation had an R2 factor of up to 0.99, 0.7, and 0.83, respectively. These findings contribute to the development of seismic design provisions for GFRP-RC structures, addressing the limitations in current codes and standards.

DOI:

10.14359/51740653


Document: 

SP-360_51

Date: 

March 1, 2024

Author(s):

Todor Zhelyazov, Eythor Rafn Thorhallsson, Jonas Thor Snaebjornsson

Publication:

Symposium Papers

Volume:

360

Abstract:

The study delves into modeling the interface between Fiber-Reinforced Polymer (FRP) and concrete, with a specific emphasis on simulating the gradual deterioration of bond strength. A model rooted in continuum damage mechanics is integrated with an empirically derived relationship to address interfacial shear failure. Material models are defined for the concrete, the externally bonded FRP reinforcement, and the adhesive layer. These material models are implemented in finite element simulations, replicating experimental setups widely used to investigate the FRP-concrete interface. Key results are reported and discussed. More precisely, the numerically obtained load-slip relationships for the interface and visualizations of the damaged zones in concrete are provided. The numerical results are in close agreement with existing experimental data. The finite element analyses suggest that concrete degradation is not limited to the areas near the adhesive joint. This implies that the adhesive joint could influence the overall behavior of the structural elements, even when debonding failures are prevented by anchorage devices.

DOI:

10.14359/51740663


Document: 

SP-360_09

Date: 

March 1, 2024

Author(s):

Juan Torres Acosta and Douglas Tomlinson

Publication:

Symposium Papers

Volume:

360

Abstract:

Three bridge barriers were tested under pseudo-static loading to assess the effectiveness of a dowelling repair technique for restoring the capacity of damaged glass fiber-reinforced polymer (GFRP) reinforced systems. Barriers were 1500 mm (59.1 in.) wide and tested with an overhang of 1500 mm (59.1 in.). One barrier was entirely reinforced with steel reinforcement with the layout and geometry common in Alberta, Canada for highway applications. A second barrier replaced all steel reinforcement with GFRP bars. The third barrier simulates repair where the barrier is damaged and needs to be replaced by removing the barrier, drilling holes, and using epoxy to dowel GFRP bars into the deck. All barriers failed by concrete splitting at the barrier/deck interface which is attributed to the complex interaction of stresses from the barrier wall and overhang. The steel reinforced barrier was strongest but had slightly lower energy dissipation than the GFRP reinforced barriers. The repaired GFRP reinforced barrier had very similar response to the baseline GFRP reinforced barrier but reached a slightly larger capacity. Previously completed finite element models showed similar general responses and failure modes but larger stiffnesses and strengths than the tests which requires further investigation.

DOI:

10.14359/51740621


Document: 

SP-360_34

Date: 

March 1, 2024

Author(s):

Adi Obeidah and Hani Nassif

Publication:

Symposium Papers

Volume:

360

Abstract:

Developments in the prestressed concrete industry evolved to incorporate innovative design materials and strategies driven towards a more sustainable and durable infrastructure. With steel corrosion being the biggest durability issue for concrete bridges, FRP tendons have been gaining acceptance in modern prestressed technologies, as bonded or unbonded reinforcement, or as part of a “hybrid” system that combines unbonded CFRP tendons and bonded steel strands. Assessments of the efficacy of hybrid-steel beams, combining bonded and unbonded steel tendons. in the construction of segmental bridges and in retrofitting damaged members has been established by several researchers. However, limited research has been conducted on comparable hybrid prestressed beams combining CFRP and steel tendons (hybrid steel-cfrp beams). This paper provides an insight on the flexural behaviour of eighteen prestressed beams tested under third-point loading until failure with the emphasis on the tendon materials (i.e., CFRP and steel) and bonding condition (i.e., bonded, unbonded). In addition, a comprehensive finite element analysis of the beams’ overall behaviour following the trussed-beam methodology is conducted and compared with the experimental results. Results show that hybrid beams, utilizing CFRP as the unbonded element maintained comparable performance when compared to hybrid steel beams. The results presented in this paper aim to expand the use of hybrid tendons and facilitate their incorporation into standard design provisions and guidelines.

DOI:

10.14359/51740646


Document: 

SP-360_47

Date: 

March 1, 2024

Author(s):

Bartosz Piątek and Tomasz Siwowski

Publication:

Symposium Papers

Volume:

360

Abstract:

Due to a dynamic development of infrastructure, engineers around the world are looking for new materials and structural solutions, which could be more durable, cheaper in the life cycle management, and built quickly. One of prospective solutions for building small-span bridges can be precast lightweight concrete reinforced with glass fiber-reinforced polymer (GFRP) rebars. Thanks to prefabrication, it is possible to shorten the construction time. Using lightweight concrete affects structure weight as well as transportation costs. GFRP rebars can make the structure more durable and also cheaper in terms of life cycle management costs. The paper focuses on the fatigue performance of a real-scale arch (10.0 m (33 ft) long, 1.0 m (3.3 ft) wide, and 2.4 m (7.9 ft) high) made of lightweight concrete and GFRP rebars (LWC/GFRP) in comparison with an arch made of normal weight concrete and typical steel reinforcement (NWC/steel). The fatigue loads ranging from 12 to 120 kN (2.7 to 27 kip) were applied in a sinusoidal variable manner with a frequency of 1.5 Hz. This research revealed that the NWC/steel arch exhibited significantly better fatigue resistance when compared to the LWC/GFRP arch. Differences in the behavior of the NWC/steel and LWC/GFRP models under fatigue load were visible from the beginning of the research. The LWC/GFRP model was exposed to fatigue loads, resulting in gradual deterioration at an early stage. This degradation was evident through stiffness being progressively reduced, leading to increased displacements and strains as the number of load cycles increased. The model did not withstand the fatigue load and was destroyed after approximately 390 thousand load cycles, in contrast to the NWC/steel model, which withstood all 2 million load cycles without significant damages or the stiffness being decreased. However, the prefabricated lightweight concrete arches with composite reinforcement seem to be an interesting alternative of load-bearing elements in infrastructure construction.

DOI:

10.14359/51740659


12345...>>

Results Per Page