Surface Settlement of SCC – How Critical is it on Concrete Performance?

Kamal H. Khayat

Civil, Architectural, and Environmental Engineering Center for Infrastructure Engineering Studies

OUTLINE

- Workability functional requirements of SCC
- Measurement of surface settlement
- Selected factors affecting surface settlement
- Effect of surface settlement on SCC performance
 - Top-bar effect
 - Transport properties
- Recommendations

Flow behavior of SCC is complex and must be optimized to secure adequate performance

low resistance to flow (low τ_0) high stability (moderate visc.)

high passing ability (low τ_0 + mod. visc.)

Rheological parameters of SCC

Wallevik 2002

SCC Functional Requirements

- Filling ability
- Passing ability

Filling capacity

- Resistance to segregation
 - Static stability
 - Dynamic stability

Adequate Workability

Inadequate Workability

Inadequate Workability

Static stability : resistance to segregation, bleeding, settlement following placement and until the onset of setting

OUTLINE

- Workability functional requirements of SCC
- Measurement of surface settlement
- Selected factors affecting surface settlement
- Effect of surface settlement on SCC performance
 - Top-bar effect
 - Transport properties
- Recommendations

Non-Contact Laser Measurement of Setlement

Khayat and Guizani, ACI Mat. Jr. July-Aug. 1997

Effect of Welan Gum on Surface Settlement and Ext. Bleeding (H = 700 mm)

Khayat and Guizani, ACI Mat. Jr. July-Aug. 1997

Surface Settlement

Khayat and Guizani, ACI Mat. Jr. July-Aug. 1997

Predicted Surface Settlement

Khayat and Guizani, ACI Mat. Jr. July-Aug. 1997

Surfcae Settlement Column

Surface Settlement

Surface Settlement

Acrylic plate Ø 150 mm, t= 4 mm

LVDT (Linear Variable Differential Transformer)

NAME OF COMMENDER

Surface Settlement and Rate of Settlement

OUTLINE

- Workability functional requirements of SCC
- Measurement of surface settlement
- Selected factors affecting surface settlement
- Effect of surface settlement on SCC performance
 - Top-bar effect
 - Transport properties
- Recommendations

Reduction in w/cm

Effect of w/cm on Surface settlement of SCC

Khayat et al. 2005

Surface Settlement vs. Plastic Viscosity of SCC

Khayat et al. 2005

Incorportaion of VMA

Speed (Rev/s)

Effect of Welan Gum on Surface Settlement of SCC

Surface Settlement

Hwang and Khayat, ACI SP-233, 2006

Enhanced Stability with Fine Fillers (w/p = 0.42)

Enhanced Stability with Fine Fillers (w/p = 0.42)

Time (min)

OUTLINE

- Workability functional requirements of SCC
- Measurement of surface settlement
- Selected factors affecting surface settlement
- Effect of surface settlement on SCC performance
 - Top-bar effect
 - Transport properties
- Recommendations

Importance of stability of SCC

- Lack of stability can result in greater risk of bleeding, segregation, and surface settlement leading to porous ITZ under coarse aggregate and reinforcement
- Lack of stability can adversely affect bond strength, mechanical properties, and transport properties

Lack of mixture stability can weaken bond to reinforcement

Special care is needed to produce stable SCC mixtures, especially in deep elements

Wall Elements $1.5 \times 0.95 \times 0.2$ m

Effect of VMA dosage on surface settlement of SCC

Effect of VMA Dosage on Coarse Aggregate Distribution

Effect of VMA Dosage on Coarse Aggregate Distribution

Max. Settlement vs. Top-Bar Effect

Khayat, ACI Mat. Jr. March-April. 1998

Rheological properties affect bond to reinforcement

H = 1.5 m

Rheological properties affect performance of hardened concrete

Khayat, Mitchell, NCHRP Report 628, 2008

In-situ compressive strength

Khayat, Mitchell, NCHRP Report 628, 2008

Lack of Stability Affects ITZ Quality

Resistivity, R = Voltage / Intensity of current

Petrov et al. SCC 2001

Time before onset of corrosion of rebars is influenced by stability of fresh concrete (affecting quality of ITZ)

Homogeneity In-Situ Durability

Effect of w/cm on Surface settlement of SCC

Khayat et al. 2005

In-situ diffusion coefficient (m^2/s)

Recommendations

Static stability	MSA 9.5, 12.5 mm Surface settlement $\leq 0.5\%$ Settlement rate at 25-30 min ≤ 0.27 %/h MSA 19 mm Surface settlement $\leq 0.3\%$ Settlement rate at 25-30 min ≤ 0.12 %/h Column segregation index (Iseg) $\leq 5\%$ Percent static segregation (S) $\leq 15\%$
Plastic viscosity	Plastic viscosity \leq 80 Pa.s
In-situ mechanical properties	Core-to-cylinder compressive strength \ge 90% Bond strength modification factor \le 1.4