

Effect of Cracking on Reinforced Concrete Corrosion

aci

Presented by Brian Pailes, Ph.D., PE, NACE CP-3

Reinforced Concrete Corrosion

- Concrete is an effective barrier of chlorides, carbonation, and other contaminates reaching the steel
- Keys to concrete success
 - High pH allows for steel to be passive
 - Low permeability of concrete
 - Cover-depth (increase barrier distance to overcome)

Cover Depth

• Cover-depth is one of the most important factors in the service life of a reinforced concrete structure

• The best quality concrete does not help if the concrete cover is low or cracks are present

Cracks and Corrosion

- Corrosion leads to cracking
 - Iron oxide is expansive
 - Note, some forms of corrosion in low oxygen environments are not expansive, i.e. black rust
- Cracking leads to corrosion
 - Direct path

aci

Pilling-Bedworth Ratio

Concrete Cracking

- Cracking in the concrete provides a direct pathway to reinforcement for contaminates
- Many causes of concrete cracking
 - Concrete shrinkage
 - Mechanical stress due to overloading or improper concrete strength, under reinforced
 - ASR
 - Freeze thaw damage
- Service life of structure subjected to cracking is significantly reduced

I-395 HOV over Potomac River

(aci)

I-395 HOV

- Deck
 - Original concrete deck was overlaid
 - Shrinkage cracking in the overlay has exposed the deck to high concentrations of chlorides
 - Center lane closure pour construction joint has provided a pathway for moisture and chlorides
- Substructure

- Chloride exposure only at expansion joints

Deck – Corrosion Potentials

aci 🕽

Deck - Sound Concrete

Deck - Cracks/Construction Joints

(aci)

Substructure – Cracked with no Expansion Joint

Substructure – Cracked with Expansion Joint

(aci)

Depth (in)

aci

The Concrete Convention and Exposition

Substructure - Carbonation

Salt Storage Monolithic Dome

(aci)

Salt Storage Dome

(aci)

• Bulk raw salt is stored and bagged within this facility

Poor Shotcrete Application

• Shadowing of welded wire fabric reinforcement

(aci)

Poor Shotcrete Application

Cracking Along Post Tensioning

Chloride Profile

(aci)

Carbonation Depth

• Sound concrete has a maximum of 0.5 inches of carbonation

(aci)

 Crack allowed reduction of pH past 3 inches

Aquarium

• Project example courtesy of

(aci)

• Corrosion evaluation of an Aquarium supported on a pier structure

Section Loss At Cold Joint

Section loss at Cold Joint

Peach Street Bridge

• 3-span bridge in Kutztown PA

(aci)

• Freeze thaw damage leading to corrosion deterioration

Sub-Parallel Cracking

Cores Extracted From Bridge

Leading to Corrosion Activity

Thank you!

(aci)

Questions?