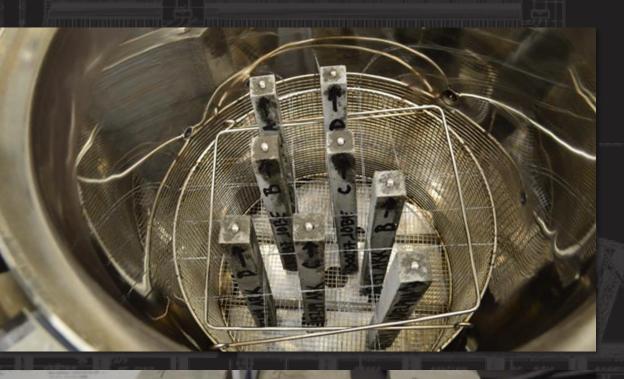
ASSESSMENT OF AGGREGATE REACTIVITY USING AN ULTRA-RAPID AUTOCLAVE TEST METHOD

Stephanie G. Wood, PhD Research Civil Engineer Geotechnical and Structures Laboratory US Army Engineer Research and Development Center (ERDC)


Jennifer Eisenhauer Tanner, PhD

Professor Civil and Architectural Engineering University of Wyoming

U.S. ARMY

MOTIVATION

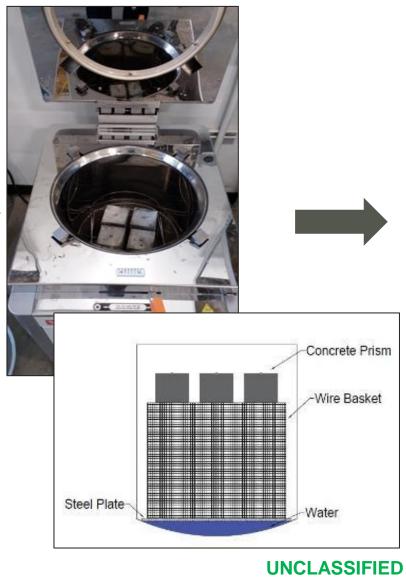
Problem: Need rapid and reliable test methods for ASR potential of concrete aggregates

- ASTM C1293 concrete prism test (CPT)
 - 1 year to test using (portland) cement only
 - 2 years to test using preventive SCMs, e.g., coal ash
 - Not practical for construction projects or the US military
- ASTM C1260 / C1567 accelerated mortar bar tests (AMBT)
 - 14 days testing duration
 - Produce false positive and false negative results
 - Commonly used in construction projects due to rapidity

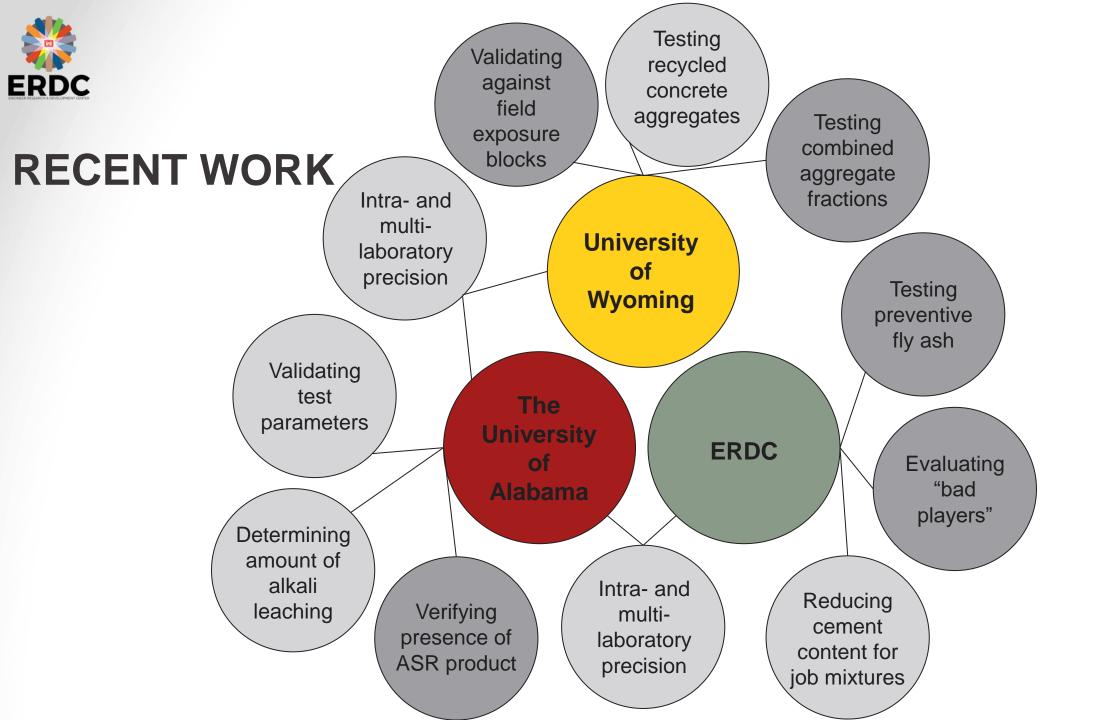
Overarching Goal: Validate autoclave test methods.

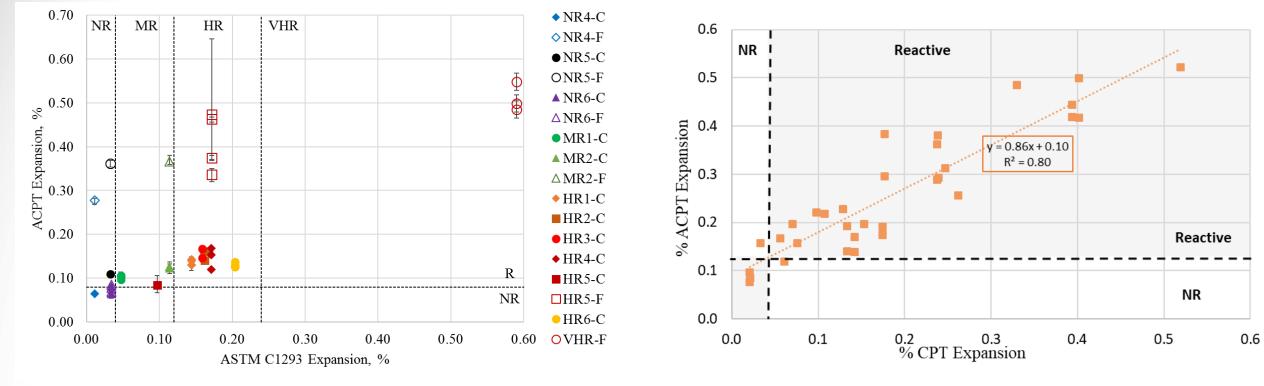
If accuracy \geq that of ASTM C1260 and ASTM C1567, then specify autoclave test methods as alternatives.

HISTORY OF AUTOCLAVE TEST METHODS


Test Parameter	Chinese Autoclave Method (1983)	GBRC (1987)	Nishibayashi et al. (1987)	Laval/ CANMET (1991)	Nishibayashi et al. (1996)	Giannini and Folliard (2013)
Duration (from mixing)	3 days	3 days	2 days	3 days	unknown	4 days
Duration of Conditioning	6 hours	2 hours	4 to 5 hours	5 hours	4 hours	24 hours
Specimen Type	Mortar	Mortar	Mortar	Mortar	Concrete	Concrete
Specimen Size, mm	10 x 10 x 40	40 x 40 x 160	40 x 40 x 160	25 x 25 x 285	75 x 75 x 400	75 x 75 x 285
w/cm	0.30	unknown	0.45	0.50	0.54	0.42
Na ₂ O _{eq} , by mass of cement	1.5%	2.5%	1.5%	3.5%	3.0%	3.0%
Temperature	150 °C	111 °C	128 °C	130 °C	133 °C	133 °C
Conditioning	In 10% KOH solution inside autoclave	In boiling water inside pressure vessel	Inside autoclave	Inside autoclave	Inside autoclave	Inside autoclave
Proposed Expansion Limit	-	-	-	0.15%	-	0.08%

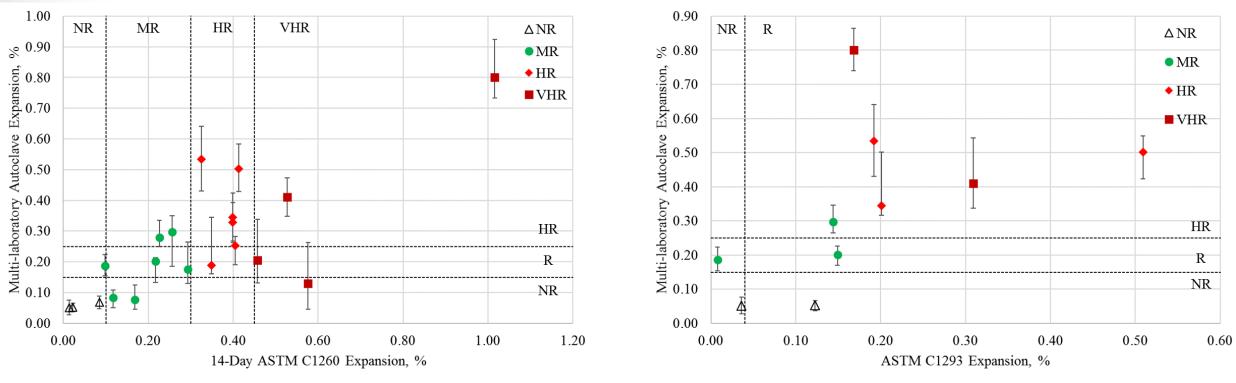
AUTOCLAVING PROCESS





AUTOCLAVED CONCRETE PRISMS VS. ASTM C1293

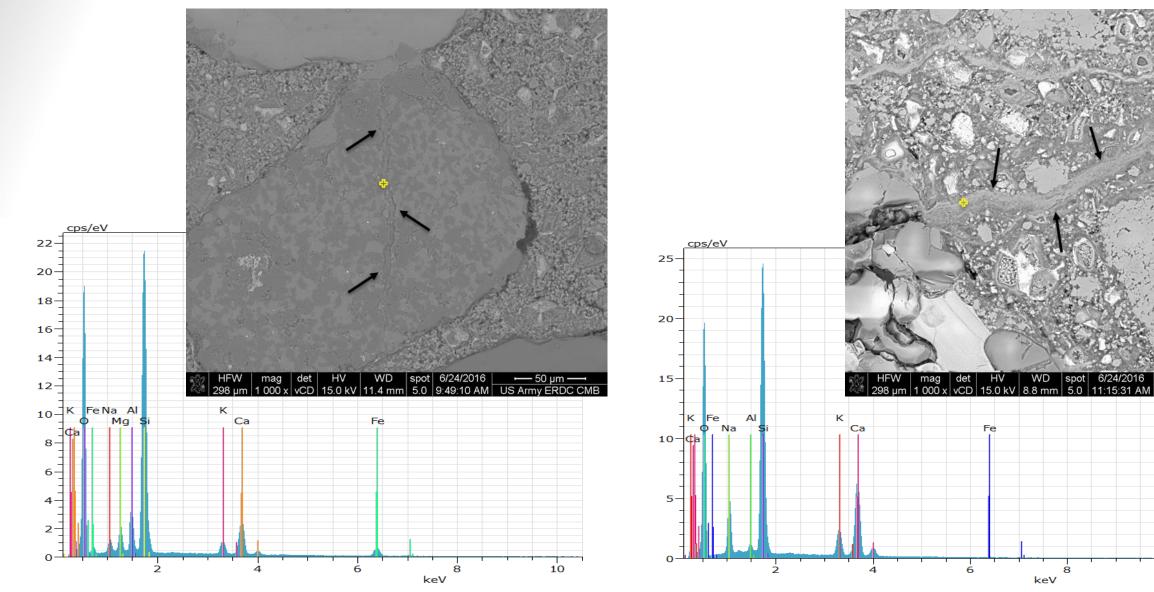
Overall Agreement: 85%


Coarse Aggregates: 93% Fine Aggregates: 69%

AUTOCLAVED MORTAR BARS (LAVAL/CANMET METHOD)

Compared to ASTM C1260

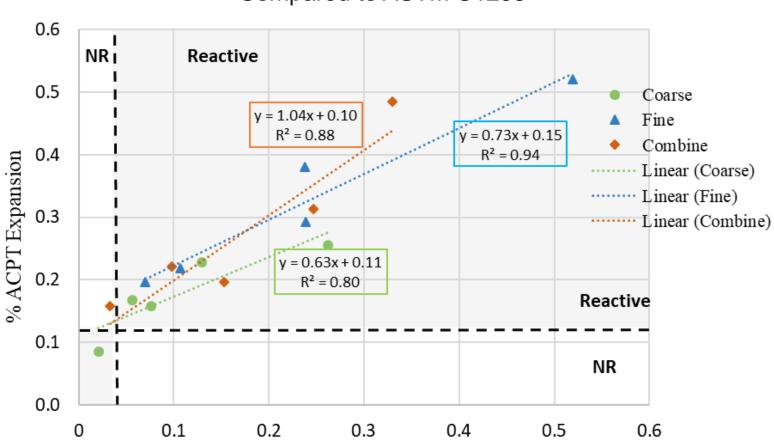
85% agreement for 20 aggregates


80% agreement for 10 aggregates

Compared to ASTM C1293

PRELIMINARY SEM-EDS INVESTIGATION

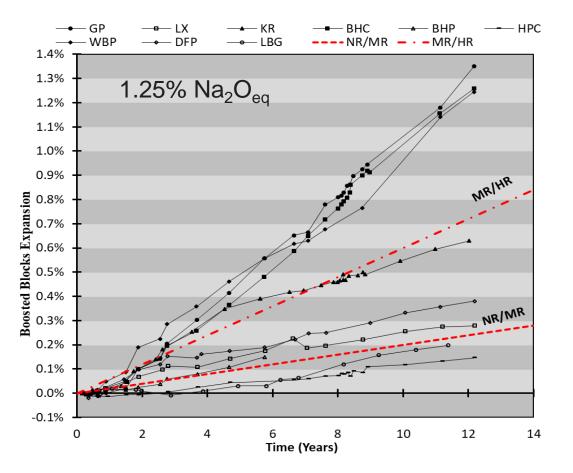
UNCLASSIFIED


US Army ERDC CMB

10

COMBINED AGGREGATE FRACTIONS

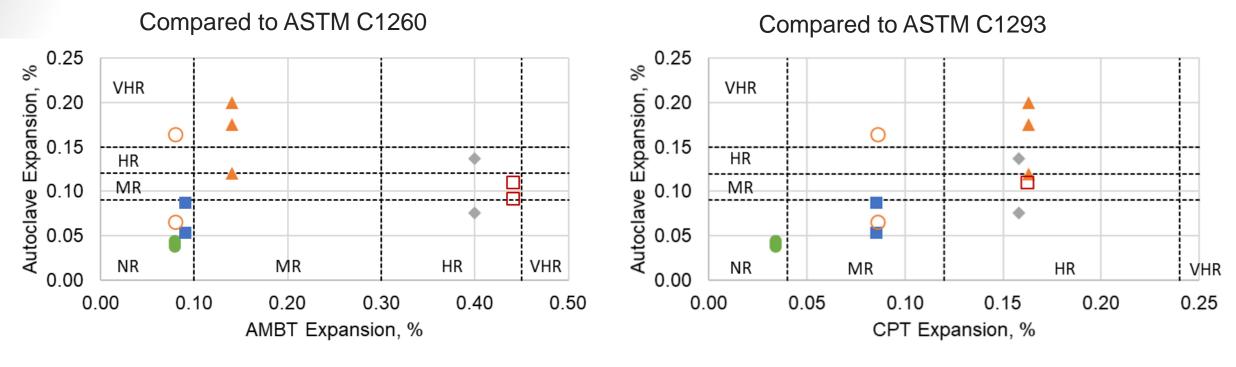
Compared to ASTM C1293


% CPT Expansion

FIELD EXPOSURE BLOCKS

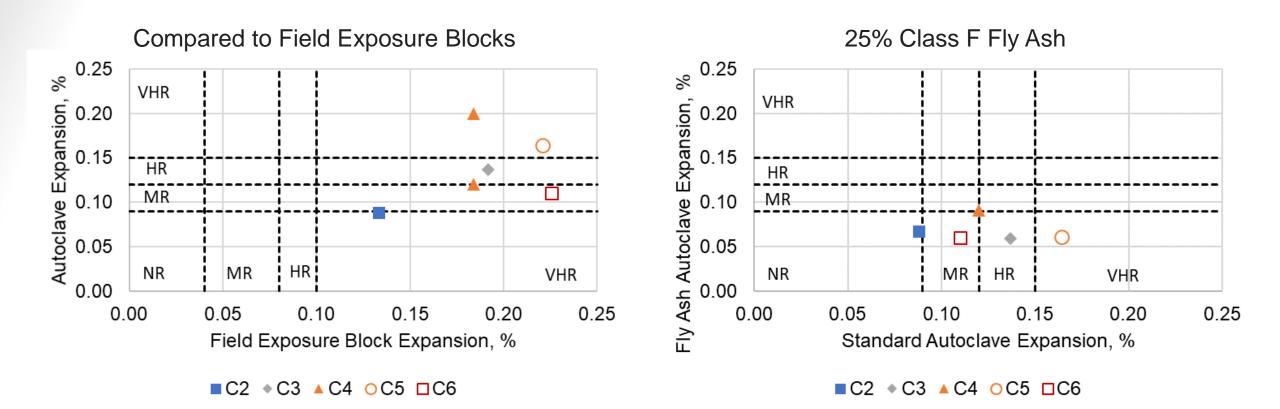
	Reactivity Classification				
Aggregate	Field Expos	ure Blocks	СРТ	ACPT	
Source	Unboosted	Boosted		Coarse	Fine
BHP	NR	MR	NR		
DFP	NR	MR	NR		
BHC	NR	HR	NR		
GP	HR	HR	MR	MR	VHR
HPC	NR	NR	NR	NR	MR
KR	HR	HR	HR	HR	VHR
LBG	NR	NR	HR	MR	HR
LX	NR	MR	MR		
WOR	HR	HR	MR	MR	VHR

RECENT ERDC WORK - AGGREGATES


	Mineralogy	Source Location	Reactivity Classification*		
Aggregate ID			AMBT	СРТ	Field Exposure Block
C1	Limestone	Georgia	NR	NR	-
C2	Mixed quartz, chert	Arkansas	NR	MR	VHR
C3	Rhyolite, mixed quartz	Virginia	HR	HR	VHR
C4	Quartzite	South Dakota	MR	HR	VHR
C5	Grandodiortie and metadacite	Maryland	NR	MR	VHR
C6	Greywacke	Pennsylvania	HR	HR	VHR
NR – non-i MR – mod	STM C1778 guidance reactive erately reactive y reactive y highly reactive				

Reactivity	Ranges of Expansion, %				
Classification	ASTM C1260 (AMBT)	ASTM C1293 (CPT)	Autoclaved Concrete Prisms	Autoclaved Mortar Bars	
NR	exp. < 0.10	exp. < 0.04	exp. < 0.09	exp. < 0.15	
MR	0.10 ≤ exp. < 30	0.04 ≤ exp. < 12	0.09 ≤ exp. < 12	0.15 ≤ exp. < 25	
HR	0.30 ≤ exp. < 0.45	0.12 ≤ exp. < 0.24	0.12 ≤ exp. < 0.15	0.25 ≤ exp. < 0.40	
VHR	0.45 ≤ exp.	0.24 ≤ exp.	0.15 ≤ exp.	0.40 ≤ exp.	

RECENT ERDC WORK - RESULTS


● C1 ■C2 ◆C3 ▲C4 ○C5 □C6

● C1 ■ C2 ◆ C3 ▲ C4 ○ C5 □ C6

RECENT ERDC WORK - RESULTS

CONCLUSIONS AND FUTURE WORK

Conclusions

- Require two different autoclave methods for coarse and fine fractions
- Autoclave test methods induce ASR
- Accuracy of autoclave methods appears to be as good as ASTM C1260
- Multi-laboratory precision for Laval/CANMET method comparable to both ASTM C1260 and ASTM C1293
- Class F fly ash produced reduced expansions

Future Work

Goal for the US Air Force: Specify autoclave test methods as alternatives to ASTM C1260 and ASTM C1567

- Resolve discrepancies with repeat test results
- Continue to investigate ASR preventive measures such as slag cement and silica fume
- Carry out more petrographic investigations
- Compare results of slowly/moderately reactive aggregates to behavior of field exposure blocks

REFERENCES

- Fournier, B., Bérubé, M. A., & Bergeron, G. (1991). A rapid autoclave mortar bar method to determine the potential alkali-silica reactivity of St. Lawrence lowlands carbonate aggregates (Quebec, Canada). *Cement, Concrete, and Aggregates*, *13*(1), 58-71.
- Giannini, E. R., & Folliard, K. J. (2013). A Rapid Test to Determine Alkali-Silica Reactivity of Aggregates Using Autoclaved Concrete Prisms. SN3235, Portland Cement Association, Skokie, Illinois, USA, 21.
- Wood, S. G., Giannini, E. R., Ramsey, M. A., & Moser, R. D. (2018). Autoclave test parameters for determining alkali-silica reactivity of concrete aggregates. *Construction and Building Materials*, *168*, 683-691.
- Wood, S. G., Giannini, E. R., Bentivegna, A. F., Rashidian-Dezfouli, H., Rangaraju, P. R., Drimalas, T., ... & Moser, R. D. (2017). Five-hour autoclave test for determining potential alkali-silica reactivity of concrete aggregates: a multi-laboratory study. *Advances in Civil Engineering Materials*, 6(1), 550-563.
- Wood, S.G. (2017). *Investigation of autoclave methods for determining alkali-silica reactivity of concrete aggregates*. [Doctoral dissertation, The University of Alabama]. The University of Alabama ProQuest Dissertations Publishing.
- Hossain, M. T., Pachel, C., & Tanner, J. E. (2022). Evaluation of Mitigation Measures and Development of an Ultra-Accelerated Test to Evaluate Alkali Silica Reaction Potential in Concrete (No. FHWA-WY-2203F).
 Wyoming. Department of Transportation.
- Folliard, K. J., Barborak, R., Drimalas, T., Du, L., Garber, S., Ideker, J., ... & Thomas, M. D. (2006). Preventing ASR/DEF in new concrete (No. FHWA/TX-06/0-4085-5).

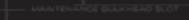
CONNECT WITH US

Stephanie G. Wood, PhD

Research Civil Engineer Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center U.S. Army Corps of Engineers Stephanie.G.Wood@usace.army.mil 601-634-5155

0

DISCOVER DEVELOP DELIVER



(f)

Linked in

🕨 YouTube 🖥

w ERDC makes the difference

