

Concrete BIM Standards: Published and Ongoing Documents, Workflows, and Application

Leonardo Garcia Bottia, PE, PhD

- 1. ACI 131 Committee Overview
- 2. Published Documents
- 3. Ongoing Developments
- 4. New Workflows and Implementation
- 5. Value Considerations

- 1. ACI 131 Committee Overview
- 2. Published Documents
- 3. Ongoing Developments
- 4. New Workflows and Implementation
- 5. Value Considerations

ACI 131 Committee Overview

ACI 131 – Building Information Modeling of Concrete Structures:

• Organized 2009 – Fall Convention in New Orleans

Current Membership:

- 17 Voting Members (many initial members still active)
- 21 Associate Members, 7 Consulting Members

Mission:

 Develop and report information on the application of Building Information Modeling (BIM) to concrete structures.

Physical

(IFC): Open standard to define and represent building objects, processes, relationships and other data. (ISO 16739)

Construction THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Structural

Detailer

ACI 131 Committee Overview

- We don't need all the data in all the exchanges.
- We might need some additional data in some exchanges.

IDM: Information Delivery Manual

- Process Map
- Exchange Requirements

MVD: Model View Definition

• Sub-set of IFC schema for (a) specific Exchange Model(s)

Test Models and Validation

1. ACI 131 Committee Overview

2. Published Documents

- 3. Ongoing Developments
- 4. New Workflows and Implementation
- 5. Value Considerations

Information Delivery Manual (IDM) for Cast-in-Place Concrete - ACI 131.1R-14

- "Roadmap" for BIM Data Exchange for CIP Industry
- Includes all major "Stakeholders"
- Timing (or sequence) of delivery of Data
- Defines the Scope of Data
- Key first step to developing a standard

Information Delivery Manual (IDM) for Cast-in-Place

EM-6: Structural Design Model: structural intent, specifying concrete profiles, steel reinforcing and tendons in members, spacing requirements

EM-15 Reinforcement Placement Model: full detailed rebar layout with ties, laps, from detailer to fabricator; fagged with placement sequence

EM-20: Construction Reference Model: detailed placement model, with pour objects, finishes and formwork; for final coordination with all other systems.

Guide to Use of IFC in Exchange of Reinforcement Models- ACI 131.2R-17

- First BIM Data Exchange for Concrete Industry
- Rebar and mesh
- Terminators & couplers
- Cages, callouts, and other assemblies
- Releases, bundles, and shipping information.

Guide to Use of IFC in Exchange of Reinforcement Models- ACI 131.2R-17

Bar Information

- Mark
 - Mark Surface Size • Geomet
 - Geometry
 - Area Location
- Length & Mass
- Bar Element
 - Bar Use

•

- **Bar Position**
- Material

٠

Coupler

Coating

End PrepWelded Wire
Reinf.Image: Strain Strain

Table 7.3e—BarPosition property usage

Value	Meaning			
BOTTOM	The bar is near the bottom face of the element. This should only be used for elements that are primarily horizontal.			
INSIDE	The bar is near the inside face of the element. This value should only be used in elements with a clear inside and outside face.			
CENTER	The bar is in the center of the element.			
OUTSIDE	The bar is near the outside face of the element. This value should only be used in elements with a clear inside and outside face.			
SIDE	The bar is on the side face of the element.			
TOP	The bar is on the top face of the element. This should only be used for elements that are primarily horizontal.			
(user-defined)	User defined values should only be used when none of the above values is appropriate			

Fig. 7.3a-BarElement, BarUse, and BarPosition in beams.

BIM Level of Development for CIP Concrete – TechNote ACI PRC-131.3-22

BIM Level of Development for CIP Concrete—TechNote

LOD 400				
Concrete	 Concrete columns, beams, slabs, walls, foundations, and other concrete elements are represented at specified locations with specified thicknesses and cross sections. All openings, insets, and protrusions are represented at specified locations. Expansion, contraction, and construction joints are represented at specified locations. Closure strips and other temporary voids such as stressing blockouts and crane openings are represented. Surface finish requirements and architectural forming requirements, such as chamfers, form liners, or board-forming are identified. Either a concrete mixture identifier or the following concrete mixture information is provided as nongraphical information associated with the concrete elements: a) Required strength b) Nonstandard weight characteristics (lightweight or heavyweight) c) Special durability requirement, such as sulfate-resistant cements d) Maximum w/cm e) Special serviceability requirements, such as modulus of elasticity and shrinkage limits f) Slump g) Maximum aggregate size h) Admixtures that can significantly influence placement rates and form pressures i) Cement substitutes that can significantly influence strength gain and heat of hydration 			

- 1. ACI 131 Committee Overview
- 2. Published Documents
- 3. Ongoing Developments
- 4. New Workflows and Implementation
- 5. Value Considerations

Guide to Use of IFC in Exchange of Reinforcement Models- ACI 131.2R-17 Update

12.2—Modeling of Complete Tendons

- Update to include posttensioned concrete.
- Work in conjunction with PTI
- Document has been balloted

Real-world Component	IFC Mapping	Notes
<u>Strand</u> Bar Wire	<u>IfcTendon</u>	One IfcTendon may represent multiple items,
<u>Anchor</u> <u>Bearing Plate</u> <u>Anchor Caps</u>	<u>IfeTendonAnchor</u>	All anchor components modeled together as a single <u>IfcAnchor</u>
Coupler	<u>IfeTendonAnchor</u>	All components of the coupler are modeled as a single IfcTendonAnchor
Pocket Formers	(none)	Modeled as part of anchor
Wedges	(none)	Wedges not modeled
Jack	(none)	Jacks not modeled.
<u>Duct</u> <u>Grout Tube</u> <u>Trumpet</u> <u>Sleeves</u>	<u>IfcTendonConduit</u>	See 12.3 for Tightly-Sheathed Tendons
<u>Grout</u> Other Fillers	(none)	Grout and other fillers are not directly modeled.
Entire Tendon	IfcElementAssembly	
Tendon Bundle	IfcElementAssembly	

EM.6 – Structural Design Model (Design Intent)

• Main Concrete Elements

- Concrete Material Specs
- Reinforcing Steel Material Specs
- "Design Intent" Rebar ("Digital" schedules)
- Rebar Layout (Detailing) Standards
- Ready for Scope Ballot

EM.6 – Structural Design Model (Design Intent)

Property Name	Type	Usage (Possible Data Values)	Required or
			Optional
ReinforcingMark	Label	C1	Required
VerticalBarMaterialName	Label	ExtColsGr80	Optional
VerticalBarGrade	Pressure	80,000 (or inherited from	Required
		VerticalBarMaterialName)	
TotalVerticalBarsPerLayer	Label	10-#8, 8-#8 (Layer 1, Layer 2,	Required
		etc)	
VerticalBarSizeAtCorners	Label	#11	Optional
VerticalBarsAlongWidthEachFace	Label	3-#8	Optional
VerticalBarsAlongDepthEachFace	Label	4-#8	Optional
VerticalBarsLegAlongWidth	Label	3-#8 (L-Shape Only)	Required
VerticalBarsLegAlongDepth	Label	3-#8 (L-Shape Only)	Required
VerticalBarsPerBundle	Integer	0 No Bundle, else 2, 3, etc.	Required
TiesByZone	Label	Typ-#3@8 or	Required
		Bot-8#3@6, Mid-#3@12,Top-	
		8#3@6	
TieBarMaterialName	Label	ExtColsGr60	Optional
TieBarGrade	Pressure	60,000 (or inherited from	Required
		TieBarMaterialName)	
TieNumberSets	Integer	3	Required
TieLayoutType	Label	Rectangular, Circular, Spiral	Required
TieLayoutDetail	Label	Linked File or Tie Set Type from	Required
		Detail Sheet	
VerticalBarSpliceType	Label	Tangential, Radial, Bearing,	Required
		Mechanical	
VerticalBarCompressionSplice	Boolean	True or False	Required
ReinforcingCoatingType	Label	Epoxy, Stainless, etc.	Optional
DetailingCodeReference	Label	Seismic or Non-Seismic	Required
ReinforcingStandardDetails	Label	Name of Linked File transmitted	Required
		as a URL via IfcURIReference	
Exposure Type	Label	Protected, exposed to weather,	Required
		exposed to soil, cast against soil,	
		corrosive, other.	

Bottom Ties by Zone Top - 8#3@6

Elevation View

EM.20 – Construction Reference Model

- Main Concrete Elements
- Concrete Material Specs
- General Information provided by the General Contractor
- Concrete Pour Sequences
- Embeds, Formwork, Finishes, etc
- Ready for Scope Ballot

EM.20 – Construction Reference Model

Pset_ACI_Schedule Property Set Usage:

This property set contains properties that describe the schedule information pertaining the Pour Object.

Property Name	Туре	Usage	Required or Optional	
ID	Alpha Numeric	A designation given to the object.	Required	
Label	Text	Name of the object	Optional	
Activity/Reference ID or Number	Alpha Numeric	A designation given to the object.	Optional	Pour 2
Start date	Date	Start Date of the Activity	Optional	
Duration	Integer	Duration of the Activity	Optional	
End Date	Date	End Date of the Activity	Optional	If CBuildingElementProxy If CBuildingElementProxy
Sequence Information	Text	Order of the designated objects	Optional	lfcBeam
Crew or resources	Alpha Numeric	Resources assigned to the object.	Optional	
Production Rates	Number	Historical rate of placing the object.	Optional	
	Number	Number of resources used	Optional	
Resource Utilization		per the duration unit.		
	IFC Label	Associated RFI's to a pour		
RFI		object	Required	
Concrete trucks spacing	Number	Time between concrete	Optional	
		trucks in an hour Eg: 10		IfcColumn
		minutes spacing between		
		trucks		Pour 1
Control Joints		Specified quantity location	Optional	
		or spacing of control joints		WP_01 WP_08
		such as saw cuts, tooled		WP_02 WP_09
		edges for a pour object. Eg:		WP_03 WP_10
		10° O.C Each Way		- WP_04 WP_11
Revision	Alpha Numeric	Latest drawing revision of	Optional	WP_05 WP_12
		the object at the time of		WP_06 WP_13
		placement		

- 1. ACI 131 Committee Overview
- 2. Published Documents
- 3. Ongoing Developments
- 4. New Workflows and Implementation
- 5. Value Considerations

ample o	of Exchange Observatio
Exchange Requirement	Concrete Material
File Type	PDF
Producing Actor(s)	Structural Designer / Revit
Consuming Actor(s)	General Contractor / PDF
	The numose of this exchange is to transfer concrete material information from

ID

ID

Name

Descripti

Concrete Element

Type

Dimensio

Material

Material C

the structural engineer to the contractor. Information is produced by a 100l, but communicated through conventional 2D schedules. The concrete material is

associated with the relevant concrete elements

Concrete Element ID

Name of the mix

Description of the miz

Concrete Element Type

Concrete Element Dimensio

Unique identifier of the Mix

Class of material classification

Concrete Mix Assignment

Steps and Processes	 very to be diagrams to logic, consistency, and output of design results. Note potential necessary connectivity and geometry adjustments.

Sample of Process Observation PO - 002 - SE/M Document No Framing Structural Design Process

Company/Discipline	Structural Engineering		
Subject/Actor	Structural Engineer + Modeler		
Recording Method	Videocall		
Date	8/26/2021		
Duration	1.5 hours		
Tools Used	ETABS, Autodesk Revit, Kodiak		
General The process intents to model and design CIP RC framing elem Considerations particularly beams for vertical loads and deflections.			
	 Generate an analytical model in a structural analysis tool, to revise and correct the connectivity between the elements. Sometimes modeling starts in BIM tool, in which case the model is later pushed into the analytical model for connectivity revision and analysis. Push model to BIM tool ta add information and hould a structural BIM model for condination. If modeling starts in BIM tool, model CIP RC elements in BIM tool (Revit), ensuing proper dimensions and 30 interactions. Export the model with the proper connectivity to a central database or neutral file, that can be used to retrieve the geometry and connectivity. Import the geometric model in the design tool and verify consistency in relationships and connectivity. Assign loads and load patters to the different elements based on the use of the facility. Run the analysis and design program. 		
Steps and Processes	 Verify force diagrams for logic, consistency, and output of design results. Note potential necessary connectivity and geometry 		

Sample of Field Observation

D D D D D D D D D D D D D D D D D D D	10 00x 0000
Document Type	Observation
Company/Discipline	Structural Engineering + Construction Coordination
Subject/Actor	Structural Engineer
Recording Method	Videocall
Date	4/15/2021
Duration	1.5 hours
Project	Healthcare Facility
Participants	Principal, Project Manager, Design Manager (responsible for project technical oversight), Lead Engineer, Lead Modeler, Technical Designer 1, Technical Designer 2, Director of Digital Practice.
	The goal of the work session is to discuss the concrete matrix and using it as a live schedule to track the material information on the concrete elements, and go beyond the conventional "dumb" text methods. The goal is to have live tracking of concrete properties and quantities.
	The building is a new patient tower and emergency podium made of Cash-in/Bac Interinterd concrete Building that will surve as an expansion to an existing harbitrare facility. There is a small metal building and a pre-cast concrete parking desk oxiside of the scope of the meeting. The project is on the early design development (DD) phase, still dealing with schematic design (SD) decisions. The building is a Cast-in-Place reinforce concrete intermediate moment frame (MT) building, with no share walk. Foundations consist of piles and pile-caps. This is standard for many framed projects made of CIP RC.
Observations	The process wants to go beyond referencing the strength of the concrete, and wants to be able to track the details of the mit used, and its association with the corresponding elements made of that mix. The concrete matrix wants to be able to associate to each element the concrete material amarameter, or types of concrete mix. (This is closely related to the intent to transmit material information during the EM.6 and EM.20 archanges).

Sample of Interview

information acquired during the observations.

How do you typically communicate design intent

IN - 002 - SE/M

Structural Engineering

Structural Engineer

Interview

Videocall

1 hour

3/25/2022

or contractor?

cument Type

Subject/Actor

Recording Met

Date

Duration

Description

Question

Company/Discipline

Answer	schedule from that The out of the back formily does not have a lot of things that we want to populate, we have created parameters in the family and our tool can populate that. For beams we also have an internal tool, Kadiak, which basically does design, and pushed that design into Revit. The design is pushed and sho the labels are pushed. I mean the beam types, so if you do a barm schedule, its already there. We also have tools to create foundations. We have a tool that does that and then pushes it to Revit. The one that is a little bit green is shear walls, and link beams, we don't have any sophisticated tool that helps as push from THAS to Revit. Let's say it's yellow. The design of a two-way slab has always been a challenge for any canagany, we do have an internal tool that has been in the little.	Info
	Most of the times it's schedules.	

This interview was intended to gather information from one of the key actor

involved in the processes observed, and gain information on his perspective

Luckily we do have some tools internally. Let's talk about columns. We have

those results, because ETABS only yields area reinforcement, not number of

bars, so we process that into number of bars and spacing. Then we push it to

Revit which Is the important part, Once it is in Revit we can create a column

tool internally which lets us take the results from ETABS, and then process

and approaches. This information is also used for triangulation with the

Fischer and Haymaker 2008).

New Workflows and Implementation

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Descriptio

Structural Design Intent

Structural Design Intent

Structural Design Intent

Construction Coordination

Construction Coordination

Construction Coordination

- 1. ACI 131 Committee Overview
- 2. Published Documents
- 3. Ongoing Developments
- 4. New Workflows and Implementation
- 5. Value Considerations

Value Considerations

Dimension	Category	Metric (Sources of Measurement)	Reference
		Design cost	(Barlish and Sullivan 2012)
		Labor	(Khanzode, Fischer and Reed 2008)
		Costs	(Abdirad 2016), (Lu, Peng, et al. 2013), (W. Lu, A. Fung, et al. 2014)
	Design Cost/	Cost benefit/savings	(Azhar 2011), (Kuprenas and Mock 2009), (PwC 2018)
	Benefit	Reduced costs of engineering	(R. Sacks 2004), (Gilligan and Kunz 2007)
Cost		BIM Contribution Value (BCV)	(Kim, et al. 2017)
Ũ		ROI	(Azhar 2011), (Walasek and Barszcz 2017), (Lee, Park and Won 2012), (Giel and Issa 2013)
		Enhanced cost estimating accuracy	(R. Sacks 2004)
	Direct	3D Background Modeling Cost	(Barlish and Sullivan 2012)
	Direct Technology	Investment cost	(Walasek and Barszcz 2017), (Giel and Issa 2013)
	Cost	BIM cost to project	(Azhar 2011), (Gilligan and Kunz 2007)
		Direct costs of 3D BIM stations	(R. Sacks 2004)
		Replacement cost: existing systems	(R. Sacks 2004)
		BIM Utilization Value (BUV)	(Kim, et al. 2017)
	Other	Construction cost	(Barlish and Sullivan 2012), (Dodge Data and Analytics 2015), (Azhar 2011)
	Related	Project cost	(Khanzode, Fischer and Reed 2008)
	Costs	Prefabrication	(Khanzode, Fischer and Reed 2008), (Kuprenas and Mock 2009)
	Time Loss/	Time savings	(Barlish and Sullivan 2012), (Azhar 2011), (Giel and Issa 2013), (Gilligan and Kunz 2007)
Time		Time	(Khanzode, Fischer and Reed 2008), (Abdirad 2016), (Lu, Peng, et al. 2013), (Kaner, et al. 2008)
	Benefit	Construction duration	(Kuprenas and Mock 2009)
		Accelerated project completion	(Dodge Data and Analytics 2015)
		Time savings in design	(PwC 2018)
		Documentation productivity	(Sacks and Barak 2008)
		Productivity	(Lu, Peng, et al. 2013), (Kaner, et al. 2008)
	Productivity	Productivity gain: design/drafting	(R. Sacks 2004)
		Modeling Productivity	(R. Sacks, C. Eastman, et al. 2005), (Dodge Data and Analytics 2015)

Dimension	Category	Metric (Sources of Measurement)	Reference
	RFIs	RFIs	(Barlish and Sullivan 2012), (Khanzode, Fischer and Reed 2008), (Giel and Issa 2013), (Abdirad 2016)
		RFI Reduction	(Dodge Data and Analytics 2015)
	COs	COs	(Barlish and Sullivan 2012), (Cannistraro 2010), (Giel and Issa 2013), (Abdirad 2016), (Kuprenas and Mock 2009).
		CO Processing Time	(Francom and Asmar 2015)
		Rework	(Kuprenas and Mock 2009), (Khanzode, Fischer and Reed 2008), (Abdirad 2016)
		Errors & Omissions	(Abdirad 2016)
nce		Error reduction: design & drafting	(R. Sacks 2004)
tma		Completeness of Information	(Abdirad 2016)
erfc	Rework/ Errors	Illogical design	(Lee, Park and Won 2012)
<u> </u>		Discrepancies	(Lee, Park and Won 2012)
		Missing Items	(Lee, Park and Won 2012)
		Cost: Warranty & Latent Defects	(Francom and Asmar 2015)
		Material savings in design	(PwC 2018)
		Risk savings in design	(PwC 2018)
		Conflict Checking	(Kuprenas and Mock 2009)
		Coordination	(Khanzode, Fischer and Reed 2008)
	C-f-t-	Safety	(Khanzode, Fischer and Reed 2008)
	Safety	Reduction in Safety Incidents	(Dodge Data and Analytics 2015)
		Improved project definition	(R. Sacks 2004)
ive		Enhanced estimating accuracy	(R. Sacks 2004)
alitat	General	Streamlined logistics	(R. Sacks 2004)
Qué		Production automation	(R. Sacks 2004)
		BIM Sensible Value (BSV)	(Kim, et al. 2017)

Value Considerations

Metric	Value Considerations
Implementation Time	 Time required to implement standard processes varies based on IT capabilities May take weeks but is a one-time investment
Information Production Time	 Time spent on information production varies depending on degree of automation Structural information production w/ conventional methods: 30 min/1,000 CY Construction information production w/ conventional methods: 15 min/1,000 CY
Reinforcement Detailing Time	 Manual set up of basic reinforcement: 45 min/1,000 CY Manual QTO of reinforcement (early estimating): 15 min/1,000 CY
Construction Coordination Time	 Setting up the construction simulation and coordination: 20 min/1,000 CY Subcontractor task durations vary, but re-modeling information is very time consuming Most of this time could be saved by producing stakeholder w/ exchange standards
Errors & Omissions	 Several errors and omissions caught during the manual set up of models and information Specific values for errors and omissions depend on modeler and proficiency with tools

Thank you!