Use of Flexible Filler in Post-Tensioned Bridges

Dr. Natassia Brenkus, The Ohio State University

Gary R. Consolazio & Trey Hamilton, University of Florida Seaska Pérez-Avilés, University of Florida Madiha Ammari, The Ohio State University

The Ohio State University

COLLEGE OF ENGINEERING

Motivation

Post-tensioning Components

Issues with grout

Tendon Corrosion

Internal and External Tendons

Research Status - Final Report Complete

- Literature review
- Filler injection
- Structural testing
 - Flexural strength
 - Fatigue at deviator and anchorage
- Wire break detection

Tasks Completed

- Literature review
- Filler injection
- Structural testing
 - ✓ Flexural strength
 - ✓ Fatigue at deviator and anchorage
- Wire break detection

UF FLORIDA	Replaceable Unbonded Tendons for Post- Tensioned Bridges Extended Summary Extended Summary Part I Mockup for Flexible Filler Injection Part II Structural Testing Part II Wire Break Detection Final Report Principal investigator: H. R. Hamilton Co-Principal investigator: M. Abdullah Rahul Bhatia
	Natassia Brenkus Devon Skelton Sponsor: Florida Department of Transportation (FDOT) William Potter, P.E Project Manager Rick W. Vallier, P.EProject Manager Contract: UF Project No. 000112216 & 000112218 FDOT Contract No. BDV31-977-15 FDOT Contract No. BDV31-977-15 Chick Contract No

Developed Injection Procedures

- ✓ Vacuum assist recommended
- ✓ No venting
- ✓ Verified process

LEGE OF ENGINEERING

Developed Injection Procedures

- ✓ ASBI Flexible Filler Certification
- ✓ Offered 3 years, including field demo

Tasks Completed

- Literature review
- Filler injection
- Structural testing
 - Flexural strength
 - ✓ Fatigue at deviator and anchorage
- Wire break detection

	Replaceable Unbonded Tendons for Post- Tensioned Bridges
	Extended Summary
	This report is one of a four-part compilation published under separate covers as follows: Extended Summary Part I Mockup for Flexible Filler Injection Part II Structural Testing Part III Wire Break Detection
	Final Report December 2017
	Principal Investigator:
P4	Co-Principal investigator:
\Box_{\varkappa}	J. A. RICE
E	Research assistants:
SN	Rahul Bhatia
OE	Natassia Brenkus
E.	Devon Skeiton
F FI	Sponsor: Florida Department of Transportation (FDOT) William Potter, P.E. – Project Manager Rick W. Vallier, P.E. –Project Manager
	Contract:
	UF Project No. 000112216 & 000112218
	FDOT Contract No. BDV31-977-15
	Engineering University of Florida
	Engineering School of Sustainable Infrastructure and Environment Department of Civil and Coastal Engineering
	University of Florida
	Gainesville, Florida 32611

Structural Testing Internal and External Tendons

(3) Internal Tendon Specimens

(2) External Tendon Specimens

Test Specimens

COLLEGE OF ENGINEERING

Flexural Testing

COLLEGE OF ENGINEERING

Design Specifications: AASHTO-LRFD 2017

Bonded Tendons

Article 5.6.3.1.1

For rectangular or flanged sections subjected to flexure about one axis where the approximate stress
distribution specified in Article 5.6.2.2 is used and for which f_{pe} is not less than 0.5 f_{pu}, the average stress in
prestressing steel, f_{ps}, may be taken as:

$$f_{ps} = f_{pu} \left[1 - k \left(\frac{c}{d_p} \right) \right]$$

Unbonded Tendons

Article 5.6.3.1.2

• For rectangular or flanged sections subjected to flexure about one axis and for biaxial flexure with axial load as specified in Article 5.6.4.5, where the approximate stress distribution specified in Article 5.6.2.2 is used, the average stress in unbonded prestressing steel may be taken as:

$$f_{ps} = f_{pe} + 900 \left(\frac{d_p - c}{l_e}\right)$$

• Mixed Reinforcement Conditions

Article 5.6.3.1.3

- 5.6.3.1.3A Detailed Analysis
- 5.6.3.1.3B Simplified Analysis

Comparison with AASHTO-LRFD

 Using LRFD 5.7.3.1.3b simplified analysis for elements with bonded and unbonded tendons

COLLEGE OF ENGINEERING

Research Status

- Literature review
- Filler injection
- Structural testing
 - ✓ Flexural strength
 - Fatigue at deviator and anchorage
- Wire break detection

RIDA	Replaceable Unbonded Tendons for Post- Tensioned Bridges Extended Summary Description Dublished under separate covers as follows: Extended Summary Part I Mockup for Flexible Filler Injection Part II Structural Testing Part II Structural Testing Part II Wire Break Detection Principal investigator: H. R. Hamilton co-Principal investigator: J. A. Rice
UF FLOR	Natassia Brenkus Devon Skelton Fiorida Department of Transportation (FDOT) William Potter, P.E. – Project Manager Rick W. Vallier, P.E. – Project Manager Contract: UF Project No. 000112216 & 000112218 FDOT Contract No. BDV31-977-15 FDOT Contract No. BDV31-977-15 University of Florida Engineering School of Sustainable Infrastructure and Environment Department of Civil and Coastal Engineering University of Florida P.O. Box 116580 Gaineeville, Florida 2611

External Tendons – Deviation Points

Diabolos

THE OHIO STATE UNIVERSITY COLLEGE OF ENGINEERING

DEVIATOR @ QUARTER POINT

Reduced Beam Testing

COLLEGE OF ENGINEERING

Post-cycling evaluation

- Visual inspection of HDPE sections in diabolo
- Visual inspection of prestressing strand at wedges
- Ultimate tension tests of individual prestressing strands with diabolo in gage length

Anchorage

COLLEGE OF ENGINEERING

Tension Tests

Source: instron.com

Tension Tests

Source: instron.com

Channel 5 segmental bridge

difference at deviator

Outcomes and Implementation

- Injection procedures
- Developed heat transfer model for use in evaluating maximum length of tendon to inject
- Developed and delivered flexible filler training for engineers, contractors, and owners
- Evaluated AASHTO LRFD provisions for flexural design
- Evaluated fatigue resistance
- Evaluated diabolo geometry
- Developed prestressing strand breakage detection algorithm

Field Implementation

FINLEY Engineering Group

- Wekiva Parkway Section 6
- Cast-in-place segmental
- Flexible filler used for external tendons and internal bottom continuity tendons

Field Implementation

Engineering Group

- Wekiva Parkway Section 6
- Cast-in-place segmental
- Flexible filler used for external tendons and internal bottom continuity tendons

Field Implementation

- First continuity tendons injected
- (3) 650 gallon internallyheated tanks
- Monitored flow and qty injected.

- Initial feedback from the field
- Vacuum-assist learning curve
 <u>The Ohio State University</u> college of Engineering

Current Research - Flexural Capacity of Concrete Elements with Unbonded/Bonded Prestressing

 Develop design guidelines and analysis procedures for bridge members with unbonded tendons with particular focus on a combination of unbonded tendons and bonded prestress and/or mild reinforcement.

Phases of Project (BDV31-977-93)

Contact Information

- Dr. Natassia Brenkus, The Ohio State University
- Brenkus.4@osu.edu / 614-688-3184
- Dr. Trey Hamilton, University of Florida
- hrh@ce.ufl.edu / 352-294-7797
- Dr. Gary Consolazio, University of Florida
- <u>grc@ufl.edu</u> / 352-294-7796

Acknowledgements

Marcus H. Ansley Structures Research Center CTL Labs and Dr. Gary Gan

DYWIDAG-SYSTEMS

WORKING WITH TRUSTED BRANDS SINCE 1918

sonneborn

THE OHIO STATE UNIVERSITY COLLEGE OF ENGINEERING

Test Design

- Modeled fatigue test after ETAG-013
- Minimum stress range of 11.6 ksi
- Maximum load of 65% of tensile element characteristic strength

