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▪ Modeling energy dissipation is crucial task in nonlinear time

history analysis (NTHA) of structures.

▪ Rayleigh damping is most common method used to

represent the energy dissipation in bridges.

▪ The Rayleigh damping matrix c is given by:

c = a0 m + a1 k

where m and k are the mass and stiffness matrices of the

structure, respectively. If the same damping ratio ζ is used at

two modes with frequencies ωi and ωj, the coefficients a0 and

a1 are computed as follows:

a0 = ζ (2ωiωj)/ (ωi +ωj) a1 = ζ (2)/ (ωi +ωj)

Introduction 



▪ Simple variations of Rayleigh damping are stiffness-proportional

damping (a0 = 0), mass-proportional damping (a1 = 0), and selected

frequency ranges.

▪ Assume frequency range of ω to Rω covering modes of interest (R>1):
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▪ The main advantage of the Rayleigh is that there is no need to

explicitly build and store a damping matrix because mass and stiffness

matrices already are stored for other purposes.

▪ There is not any reliable reference to see the consequences of each

Rayleigh damping parameter on bridge seismic response assessment.

Introduction 
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➢ Provide a reference for designers to select Rayleigh damping

characteristics based on parameter variation consequences (mainly

for performance-based design methodologies)

➢ Investigate whether findings from previous studies that focused on

buildings can be applied to bridges nonlinear time history analysis

➢ Develop system & component fragility curves for different damping

modeling scenarios (considering different sources of uncertainties)

Study Objectives
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➢ Consider Four different damping modeling scenarios:

• Rayleigh damping with initial stiffness

• Rayleigh damping with tangent stiffness

• Stiffness-proportional damping with initial stiffness

• Stiffness-proportional damping with tangent stiffness

➢ Consider for each of four scenarios:

• Three different damping ratios

• Two frequency ranges in Rayleigh damping modeling

➢ Conduct NTHA and develop fragility curves

Methodology

Total of 2400 analysis cases for four-span multi-frame RC box 

girder bridges (100 bridge sub-classes for each damping modelling 

characteristic) were generated in OpenSees
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▪ General layout of a typical multi-frame bridge configuration

BRIDGES CHARACTERISTICS AND MODELING
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BRIDGES CHARACTERISTICS AND MODELING

▪ Four-span multi-frame RC box girder bridges with one in-span hinge

▪ The design details based on earlier (before 1971) Caltrans

classification and a review of several actual California bridges plans.

▪ In-span hinge is the main difference between multi-frame bridges

and single-frame bridges.

▪ Elastomeric bearing pads at seat type abutments and in-span hinge.

▪ The columns and the superstructure are monolithic.

▪ Pile caps with a group of piles underneath it.

▪ External shear keys at two abutment ends.

▪ Pin connections at column base

9
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3D FE models were developed in OpenSees
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GROUND MOTION RECORDS

▪ A suite of 100 ground motions was adopted from the Pacific Earthquake

Engineering Research Center (PEER) Transportation Research program.

▪ The set comprises 20 ground motions with strong velocity pulses, which is

characteristic of sites experiencing near-fault directivity effects as in

California.

▪ All the ground motions pertain to shallow crustal earthquakes with

magnitude ranging from 4.3 to 7.9.

▪ The incidence angle for each set of orthogonal horizontal component of

ground motions and bridge sample is treated as a random variable

▪ The vertical component of ground motions is ignored.

▪ This study focuses on a class of bridges rather than an individual bridge, so

the intensity measure (IM) of choice is PGA .
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RESULTS: frequency range effect
 1 

  
a) b) 

  
c) d) 

 2 

• 5% Damping
• Two vs. ten modes
• Complete Damage State

(a) System
(b) Column
(c) Deck unseating (at 

abutment) 
(d) Deck unseating (at in-span 

hinge)
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 1 

   
(a) (b) (c) 

   
(d) (e) (f) 

  
 2 

a) Deck displacement (abutment)
b) Deck displacement (in-span 

hinge)
c) Bearing (in transverse at in-

span hinge) 
d) Foundation (rotation) 
e) Shear key 
f) Joint seal at slight damage 

state
g) Abutment in active 

performance 
h) Abutment in passive 

performance

• 5% Damping
• Two vs. ten modes
• Slight/Moderate Damage 

State

RESULTS: frequency range effect
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Median fragilities with different frequency ranges for a) System (complete damage 

state), b) Column (complete damage state), c) Deck unseating at in-span hinge 

(Extensive damage state, and d) Shear key (moderate damage state)

 1 

 
 

a) b) 

  
c) d) 

 2 

RESULTS: frequency range effect
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Table 6  1 
Comparison of all the Rayleigh damping characteristics with respect to “RDIS-Two-5%”- 2 
In percent 3 

Component-

Damage state 

System-

Completeb 

Column-

Complete 

Deck unseat-in-

span hinge-

Extensive 

Shear key-

moderate 

Damping 

characteristic 

RDTS-Two-2%a 5.276 3.710 113.926 7.349 

RDTS-Two-5% 5.695 0.488 182.302 0.244 

RDTS-Two-10% 0.228 8.943 101.451 0.245 

RDTS-Ten-2% 17.380 12.637 6.480 9.651 

RDTS-Ten-5% 4.773 9.626 39.362 3.807 

RDTS-Ten-10% 2.278 8.618 96.035 7.824 

RDIS-Two-2% 21.607 20.588 27.654 17.192 

RDIS -Two-5% 0.000 0.000 0.000 0.000 

RDIS -Two-10% 15.262 27.480 2.708 6.357 

RDIS-Ten-2%c 19.619 27.329 19.954 14.246 

RDIS -Ten-5% 7.335 17.366 10.825 7.916 

RDIS -Ten-10% 9.339 0.163 9.381 6.846 
a: Rayleigh damping with tangent stiffness, the first two frequency range, and 2% damping ratio 4 
b: System fragility curve at complete damage state 5 
c: Rayleigh damping with initial stiffness, the first ten frequency range, and 2% damping ratio 6 
 7 

Comparison of different Rayleigh damping cases with respect to the 

“typical RDIS-Two-5%” [Ratios in percent]

RESULTS: frequency range effect
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 1 

  
a) b) 

  
c) d) 

 2 

RESULTS: mass & stiff. prop. effect

• 5% Damping
• First ten modes

a) System at complete 
damage state

b) Column at complete 
damage state

c) Deck unseating 
(abutment) at extensive 
damage state,

d) Deck unseating (at in-span 
hinge) at extensive 
damage state
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 1 

   
(a) (b) (c) 

   
(d) (e) (f) 

  
(g) (h) 

 2 

• 5% Damping
• First ten modes
• Moderate 

Damage State

RESULTS: mass & stiff. prop. effect

a) a) Deck displacement at 
abutment

b) Deck displacement at in-
span hinge) 

c) Bearing (in transverse at 
in-span hinge) 

d) Foundation (rotation) 
e) Shear key 
f) Joint seal at slight damage 

state
g) Abutment (active) 
h) Abutment (passive)
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 1 

  
a) b) 

 

 

 

 
c)  d) 

 2 

System fragility 
medians at different 
damping ratios for:

a) RDIS
b) SDIS
c) RDTS
d) SDTS

RESULTS: damping ratio effect
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• Components & system fragility showed different sensitivity to

changing damping characteristics across all damage states.

• Higher modes effect is significant and it should be consider in

estimating Rayleigh damping coefficients (e.g. fragility medians

varied by 102.5% for deck unseating at in-span hinge when 2

vs 10 modes are considered.

• System fragility is more sensitive to ignoring the mass-

proportional part of Rayleigh damping & some component

fragility are affected by stiffness matrices

• RDIS and SDTS showed highest and lowest sensitivity to

changing damping ratio, respectively.

• Deck unseating at in-span hinge is most sensitive component to

changing Rayleigh damping characteristics.

Conclusions
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Thank You! Questions?


