

A Probabilistic Study to Identify the Effect of Different Damping Modeling Characteristic on the Seismic Response of R/C Bridges

Mohammad Abbasi, M.Sc. Graduate Student Researcher Mohamed A. Moustafa, Ph.D, P.E. Assistant Professor

Civil and Environmental Engineering University of Nevada, Reno

ACI Convention – Fall 2017 | Anaheim, CA

Sunday 10-15, 2017

Outline

- **1-Introduction**
- **2- Objectives**
- **3- Bridges Characteristics and Modeling**
- **4- Ground Motion Records**
- **5- Results**
- **6- Conclusions**

Introduction

- Modeling energy dissipation is crucial task in nonlinear time history analysis (NTHA) of structures.
- Rayleigh damping is most common method used to represent the energy dissipation in bridges.
- The Rayleigh damping matrix c is given by:

$$c = a_0 m + a_1 k$$

where **m** and **k** are the mass and stiffness matrices of the structure, respectively. If the same damping ratio ζ is used at two modes with frequencies ω_i and ω_j , the coefficients \mathbf{a}_0 and \mathbf{a}_1 are computed as follows:

 $a_0 = \zeta (2\omega i\omega j)/(\omega i + \omega j)$ $a_1 = \zeta (2)/(\omega i + \omega j)$

Introduction

- Simple variations of Rayleigh damping are stiffness-proportional damping (a₀ = 0), mass-proportional damping (a₁ = 0), and selected frequency ranges.
- Assume frequency range of ω to Rω covering modes of interest (R>1):

Introduction

- The main advantage of the Rayleigh is that there is no need to explicitly build and store a damping matrix because mass and stiffness matrices already are stored for other purposes.
- There is not any reliable reference to see the consequences of each Rayleigh damping parameter on bridge seismic response assessment.

Study Objectives

- Provide a reference for designers to select Rayleigh damping characteristics based on parameter variation consequences (mainly for performance-based design methodologies)
- Investigate whether findings from previous studies that focused on buildings can be applied to bridges nonlinear time history analysis
- Develop system & component fragility curves for different damping modeling scenarios (considering different sources of uncertainties)

Methodology

Consider Four different damping modeling scenarios:

- Rayleigh damping with initial stiffness
- Rayleigh damping with tangent stiffness
- Stiffness-proportional damping with initial stiffness
- Stiffness-proportional damping with tangent stiffness
- Consider for each of four scenarios:
 - Three different damping ratios
 - Two frequency ranges in Rayleigh damping modeling
- Conduct NTHA and develop fragility curves

Total of 2400 analysis cases for four-span multi-frame RC box girder bridges (100 bridge sub-classes for each damping modelling characteristic) were generated in OpenSees

BRIDGES CHARACTERISTICS AND MODELING

General layout of a typical multi-frame bridge configuration

BRIDGES CHARACTERISTICS AND MODELING

- Four-span multi-frame RC box girder bridges with one in-span hinge
- The design details based on earlier (before 1971) Caltrans classification and a review of several actual California bridges plans.
- In-span hinge is the main difference between multi-frame bridges and single-frame bridges.
- Elastomeric bearing pads at seat type abutments and in-span hinge.
- The columns and the superstructure are monolithic.
- Pile caps with a group of piles underneath it.
- External shear keys at two abutment ends.
- Pin connections at column base

Numerical Finite Element Models

3D FE models were developed in OpenSees

GROUND MOTION RECORDS

- A suite of 100 ground motions was adopted from the Pacific Earthquake Engineering Research Center (PEER) Transportation Research program.
- The set comprises 20 ground motions with strong velocity pulses, which is characteristic of sites experiencing near-fault directivity effects as in California.
- All the ground motions pertain to shallow crustal earthquakes with magnitude ranging from 4.3 to 7.9.
- The incidence angle for each set of orthogonal horizontal component of ground motions and bridge sample is treated as a random variable
- The vertical component of ground motions is ignored.
- This study focuses on a class of bridges rather than an individual bridge, so the intensity measure (IM) of choice is PGA.

- 5% Damping
- Two vs. ten modes
- Complete Damage State
- (a) System
- (b) Column
- (c) Deck unseating (at abutment)
- (d) Deck unseating (at in-span hinge)

- 5% Damping
- Two vs. ten modes
- Slight/Moderate Damage State
- a) Deck displacement (abutment)
- b) Deck displacement (in-span hinge)
- c) Bearing (in transverse at inspan hinge)
- d) Foundation (rotation)
- e) Shear key
- f) Joint seal at slight damage state
- g) Abutment in active performance
- h) Abutment in passive performance

Median fragilities with different frequency ranges for a) System (complete damage state), b) Column (complete damage state), c) Deck unseating at in-span hinge (Extensive damage state, and d) Shear key (moderate damage state)

Comparison of different Rayleigh damping cases with respect to the "typical RDIS-Two-5%" [Ratios in percent]

Component- Damage state	System- Complete ^b	Column- Complete	Deck unseat-in- span hinge-	Shear key- moderate
Damping characteristic			Extensive	
RDTS-Two-2% ^a	5.276	3.710	113.926	7.349
RDTS-Two-5%	5.695	0.488	182.302	0.244
RDTS-Two-10%	0.228	8.943	101.451	0.245
RDTS-Ten-2%	17.380	12.637	6.480	9.651
RDTS-Ten-5%	4.773	9.626	39.362	3.807
RDTS-Ten-10%	2.278	8.618	96.035	7.824
RDIS-Two-2%	21.607	20.588	27.654	17.192
RDIS -Two-5%	0.000	0.000	0.000	0.000
RDIS -Two-10%	15.262	27.480	2.708	6.357
RDIS-Ten-2% ^c	19.619	27.329	19.954	14.246
RDIS -Ten-5%	7.335	17.366	10.825	7.916
RDIS -Ten-10%	9.339	0.163	9.381	6.846

a: Rayleigh damping with tangent stiffness, the first two frequency range, and 2% damping ratio

b: System fragility curve at complete damage state

c: Rayleigh damping with initial stiffness, the first ten frequency range, and 2% damping ratio

RESULTS: mass & stiff. prop. effect

- 5% Damping
- First ten modes

- a) System at complete damage state
- b) Column at complete damage state
- c) Deck unseating (abutment) at extensive damage state,
- d) Deck unseating (at in-span hinge) at extensive damage state

RESULTS: mass & stiff. prop. effect

- 5% Damping
- First ten modes
- Moderate Damage State
- a) a) Deck displacement at abutment
- b) Deck displacement at inspan hinge)
- c) Bearing (in transverse at in-span hinge)
- d) Foundation (rotation)
- e) Shear key
- f) Joint seal at slight damage state
- g) Abutment (active)
- h) Abutment (passive)

RESULTS: damping ratio effect

System fragility medians at different damping ratios for:

a) RDIS

b) SDIS

c) RDTS

d) SDTS

Conclusions

- Components & system fragility showed different sensitivity to changing damping characteristics across all damage states.
- Higher modes effect is significant and it should be consider in estimating Rayleigh damping coefficients (e.g. fragility medians varied by 102.5% for deck unseating at in-span hinge when 2 vs 10 modes are considered.
- System fragility is more sensitive to ignoring the massproportional part of Rayleigh damping & some component fragility are affected by stiffness matrices
- RDIS and SDTS showed highest and lowest sensitivity to changing damping ratio, respectively.
- Deck unseating at in-span hinge is most sensitive component to changing Rayleigh damping characteristics.

Thank You! Questions?

