

Fall 2016 | Philadelphia

The Concrete Convention and Exposition Philadelphia Marriott Downtown | Philadelphia, PA October 23-27, 2016

CNR-DT 200 R1 Guidelines for Strengthening of Masonry Structures with FRP in Italy Elio Sacco

Department of Civil and Mechanical Engineering University of Cassino and S.L.

Elio Sacco Strengthening of Masonry Structures

Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures

National Research Council

CONTENTS

Chapter	Title	page
1	Foreword	1
2	Materials	6
3	Basis of design for FRP strengthening	15
4	Strengthening of reinforced and prestressed con	ncrete structure 22
5	Strengthening of masonry structures	52
6	Control and monitoring	84
7-14	Appendices	88

Contents of Chapter 5 - outline of the presentation

5.1	Introduction
5.2	Design assumptions
5.3	Evaluation of debonding strength
5.4	Safety requirements
5.5	Strengthening of structural members with single or double curvature
5.6	Confinement of masonry columns
5.7	Design for seismic applications
5.8	Installation and construction details
5.9	Numerical example

Introduction

Scope

- to increase the capacity of the masonry structure
- to enhance the structural displacement at failure

Strengthening of historical and monumental buildings

- justified and carefully detailed
- in compliance with the theory of restoration

FRP strengthening design criteria

- strengthening on consolidated masonry
- FRP in tension

Design assumptions

Structural modeling

Evaluation of debonding strength

Warning: relevance of masonry-FRP bond

• brittle failure mode

General considerations and failure modes

Design strength for laminate/sheet end debonding

Design strength for intermediate debonding

Evaluation of debonding strength

Warning: relevance of masonry-FRP bond

brittle failure mode

Bond strength with stresses perpendicular to the bond surface lefters accordance

Elio Sacco

Mechanical anchorage devices

Strengthening of masonry panels

checks:

- FRP tensile strength
- Rip-off of FRP from orthogonal walls

- $P_{\rm d}$ panel self-weight,
- $N_{\rm d}$ axial force acting at the top of the panel,
- ratio between vertical and horizontal loads, $\alpha_{\rm s}$
- $F_{\rm d}$ force exerted on the masonry panel by the FRP system.

Elio Sacco Strengthening of Masonry Structures

 $\alpha_{\rm s} \cdot P_{\rm d}^{\rm (s)}$

В

 $\cdot P_{c^{i}}^{(i)}$

H_{C.d}

 $Q_{\rm d}$

Strengthening of masonry panels

Strengthening for out-of-plane loads

vertical flexural failure

Strengthening of Masonry Structures

Elio Sacco

applied FRP

check: $M_{sd} \leq M_{Rd}$ determined as a function of the mechanical characteristics of the masonry and FRP, the thickness of the masonry panel, the value of the applied axial force and the partial factor for resistance models, that is equal to 1.

Strengthening of masonry panels

Strengthening for out-of-plane loads

horizontal flexural failure

Strengthening of masonry panels

Strengthening for in-plane loads

in-plane combined bending and axial load

- vertical FRP symmetrically installed on both panel sides
- simplified procedure to evaluate the combined bending and axial capacity:

• FRP contribution neglected if mechanical anchorage devises are not present.

Elio Sacco

Strengthening of Masonry Structures

Strengthening of masonry panels

Strengthening for in-plane loads

shear capacity

- FRP applied to both sides with fibers parallel to the shear direction
- formation of truss mechanism
- design shear capacity

$$V_{\rm Rd} = \min \left\{ V_{\rm Rd,m} + V_{\rm Rd,f}; V_{\rm Rd,max} \right\}$$

masonry & FRP
contributions

failure of the compressed strut of the truss

The Concrete Convention and Exposition

Elio Sacco Strengthening of Masonry Structures

- Formation of hinges generated by the negligible tensile strength of the masonry.
- FRP used as external strengthening of a structure to prevent the formation of certain hinges and failure mechanisms.
- FRP reinforcement not recommended when collapse is controlled by shear failure or crushing of the masonry.
- FRP strengthening systems can also improve the capacity and stability of non structural vaults.

Reinforced dome

Reinforced barrel vault The Concrete Convention and Exposition

> Arches

- Arch scheme
- Arch-pier scheme
- Single curvature vaults (barrel vaults)
- > Double curvature vaults: domes
 - Membrane-type stresses
 - Flexural-type stresses
- Double curvature vaults on a square plane

FRP at the intrados inhibits the formation of the hinge at the extrados

The Concrete Convention and Exposition

FRP is not able to inhibits

shear failure

Confinement of masonry columns

- **FRP sheets** installed by **wrapping** of the member
- **FRP bars** inserted in spread holes drilled through the member

beneficial effect on the lateral strain of the column by providing tri-axial confinement.

Design of axially loaded confined members

design axial force due to the applied loads lower than the axial capacity

$$N_{\rm Sd} \le N_{\rm Rmc,d} = \frac{1}{\gamma_{\rm Rd}} \cdot A_{\rm m} \underbrace{f_{\rm mcd}} A_{\rm m} \cdot f_{\rm md}$$

design compressive strength

Elio Sacco

$$f_{\rm mcd} = f_{\rm md} \cdot \left[1 + k \cdot \left(\frac{f_{\rm l,eff}}{f_{\rm md}} \right)^{\alpha_{\rm l}} \right] \qquad k' = \alpha_2 \cdot \left(\frac{g_m}{1000} \right)^{\alpha_{\rm s}},$$

*g*_m masonry mass-density

Strengthening of Masonry Structures

Confinement of masonry columns

Confinement of circular columns Confinement of prismatic columns

- confining pressure
- reduction of the confined volume

arch-effect for rectangular section externally wrapped with FRP

effect of FRP bars for rectangular

Elio Sacco

Strengthening of Masonry Structures

Design for seismic applications Design objectives

- evaluation of seismic safety (verification of limit states)
- methods of analysis
- verification criteria (ductile and brittle members) --

Selection criteria for FRP strengthening

- masonry walls shall be connected
- connections between floors/roof and vertical elements
- constrained horizontal forces generated from roofs, arches, and vaults
- rigid floors

FRP strengthened members enhancing local ductility Elio Sacco The Con Strengthening of Masonry Structures

Installation and construction details

Quality control and substrate preparation

- evaluation of substrate deterioration
- removal and reconstruction of defective masonry supports
- substrate preparation

Recommendations for the installation

- humidity and temperature conditions in the environment and substrate
- construction details
- protection of FRP systems

Young modulus of elasticity $E [N/mm^2]$ 4000 $G \left[\text{N/mm}^2 \right]$ Shear modulus 1000 Specific weight $\gamma [kN/m^3]$ 18.0 Factor of confidence FC1.0 Partial factor 2 γм Compressive strength of masonry in the horizontal direction $f_{\rm mk}$ [N/mm²] Characteristic strength 8.0 fmd [N/mm²] Design strength 4.0 Shear capacity Characteristic strength without any axial load fvk0 [N/mm²] 0.8 Masonry block strength Mean value of compressive strength fbm [N/mm²] 38

Mean value of tensile strength

Table 14-1 - Masonry data.

Table 14-3–Partial factors and	design values of	the FRP.	
Partial factor for debonding	γf,d (Section 3.4	4.1)	1.2
Partial factor for ULS	yf (Section 3.4	1.1	
Conversion factor for environment	η_a (Section 3.5	.1)	0.95
Ultimate tensile strain	η _a ·ε _{lk} /γ (Section	on 5.2.3)	0.0151
Width of the bond strength distribution area	bd [mm] (Secti	on 5.3.2)	250
Geometrical corrective factor	ective factor k_b (Section 5.3.2)		
Interface slip at full debonding	s_u [mm] (Section 5.3.2)		0.4
Corrective factor	k _G [mm] (Sect	0.031	
Specific fracture energy	$\Gamma_{\rm Fd}$ [N/mm] (Section 5.3.2)		0.5077
TADIC 17-2-TIXE geometry and mee	ланса рюрени	<i>.</i>	
Thickness	tf [mm]	0.165	
Width	$b_{\rm f}$ [mm]	100	
Young modulus of elasticity in the fiber direction	Ef [GPa]	230	
Ultimate strain	\mathcal{E}_{lk}	0.0175	
Spacing	$p_{\rm f}$ [mm]	500	

The Concrete Convention and Exposition

fbtm [N/mm²]

3.8

Strengthening of Masonry Structures

Figure 14-5 – Shear capacity and factored shear diagrams of panels 3 and 4.

Figure 14-6 – Shear capacity and factored shear diagrams of panels 1 and 2.

Elio Sacco

Strengthening of Masonry Structures

Figure 14-7 – Layout of the FRP installation.

Table 14-12 - Combined axial and bending capacity of the FRP strengthened panel 1

Level	FRP failure	$\mathcal{E}_{\mathrm{fd}}$	$M_{ m Rd}(N_{ m Sd})$	$M_{\rm Rd}(N_{\rm Sd}) \ge$
[m]	i iti iunuit		[kN m]	$M_{ m Sd}$
0	FRP failure	0.0151	335.8	verified
1	intermediate debonding	0.0086	231.6	verified
2	intermediate debonding	0.0086	215.4	verified
3	intermediate debonding	0.0086	199.1	verified
3	intermediate debonding	0.0086	200.6	verified
4	intermediate debonding	0.0086	188.6	verified
5	intermediate debonding	0.0086	176.6	verified
6	intermediate debonding	0.0086	164.3	verified
6	intermediate debonding	0.0086	169.8	verified
7	intermediate debonding	0.0086	162.0	verified
8	intermediate debonding	0.0086	154.0	verified
9	end debonding	0.0043	86.5	verified

Table 14-13 – Combined axial and bending capacity of the FRP strengthened panel 2.

Level	FRP failure	$\mathcal{E}_{\mathrm{fd}}$	$M_{ m Rd}(N_{ m Sd})$	$M_{\rm Rd}(N_{\rm Sd}) \ge$
[m]			[kN m]	$M_{ m Sd}$
0	FRP failure	0.0151	577.0	verified
1	intermediate debonding	0.0086	482.9	verified
2	intermediate debonding	0.0086	469.4	verified
3	intermediate debonding	0.0086	455.8	verified
3	intermediate debonding	0.0086	342.7	verified
4	intermediate debonding	0.0086	332.2	verified
5	intermediate debonding	0.0086	321.6	verified
6	intermediate debonding	0.0086	310.9	verified
6	intermediate debonding	0.0086	202.4	verified
7	intermediate debonding	0.0086	194.9	verified
8	intermediate debonding	0.0086	187.3	verified
9	end debonding	0.0043	121.3	verified

Table 14-18– Shear capacity of panel 1.

Level	Factored shear	Masonry contribution	FRP contri- bution	V _{Rd max} [kN]	Shear capaci- ty	$V_{\rm Rd} > V_{\rm Sd}$	Failure
[m]	V _{Sd} [kN]	V _{Rd,m} [kN]	V _{Rd,f} [kN]		$V_{\rm Rd}$ [kN]	· Ku_ · Su	
0	76.58	57.7	124.02	1140	181.7	satisfied	FRP failure
1	76.58	45.8	124.02	1140	169.8	satisfied	FRP failure
2	76.58	40.0	124.02	1140	164.1	satisfied	FRP failure
3	76.58	34.3	124.02	1140	158.3	satisfied	FRP failure
3	46.48	35.5	124.02	855	159.5	satisfied	FRP failure
4	46.48	31.2	124.02	855	155.2	satisfied	FRP failure
5	46.48	26.9	124.02	855	150.9	satisfied	FRP failure
6	46.48	22.6	124.02	855	146.6	satisfied	FRP failure
6	21.85	25.3	124.02	570	149.3	satisfied	FRP failure
7	21.85	22.4	124.02	570	146.4	satisfied	FRP failure
8	21.85	19.6	124.02	570	143.6	satisfied	FRP failure
9	21.85	12.6	124.02	570	136.6	satisfied	FRP failure

Numerical example (Appendix H)

Table 14-19 – Shear capacity of panel 2.							
Level	Factored	Masonry	FRP contri-		Shear capaci-	T 7 . T 7	
	shear	contribution	bution	V _{Rd,max} [kN]	ty	$V_{\rm Rd} \geq V_{\rm Sd}$	Failure
[m]	$V_{ m Sd}$ [kN]	V _{Rd,m} [kN]	$V_{ m Rd,f}[m kN]$		$V_{\rm Rd}$ [kN]		
0	95.43	155.61	124.02	1140.0	279.6	satisfied	FRP failure
1	95.43	143.70	124.02	1140.0	267.7	satisfied	FRP failure
2	95.43	137.96	124.02	1140.0	262.0	satisfied	FRP failure
3	95.43	132.22	124.02	1140.0	256.2	satisfied	FRP failure
3	72.51	90.17	124.02	855.0	214.2	satisfied	FRP failure
4	72.51	85.86	124.02	855.0	209.9	satisfied	FRP failure
5	72.51	81.56	124.02	855.0	205.6	satisfied	FRP failure
6	72.51	77.25	124.02	855.0	201.3	satisfied	FRP failure
6	45.1	37.57	124.02	570.0	161.6	satisfied	FRP failure
7	45.1	34.70	124.02	570.0	158.7	satisfied	FRP failure
8	45.1	31.83	124.02	570.0	155.9	satisfied	FRP failure
9	45.1	24.88	124.02	570.0	148.9	satisfied	FRP failure

Thanks for your attention

Elio Sacco DICeM - University of Cassino & SL

sacco@unicas.it

AN ITALIAN POINTED ARCH