

Evaluation of Existing Structures Using ACI 562 Carl J. Larosche, PE

American Concrete Institute

Historic Structure

Air Force Base – Academic Center

American Concrete Institute

Academic Building

Built in the 1930s
New HVAC system October 2011

American Concrete Institute

Requirements for Structural Evaluation

- 6.1.1 A structural evaluation shall comprise a structural assessment, structural analysis, or both.
- 6.1.2 "A structural evaluation shall be performed if, during the preliminary evaluation, as described in Section 4.3, it is determined that an existing member, portions of a structure, or entire structure exhibit signs of deterioration, <u>structural deficiency</u>,"

Visual Assessment

 6.1.3 A structural evaluation shall be performed when there is a reason to question the design strength of the member or structure and insufficient information is available to determine if a member, portion, or all of the existing structure is <u>capable of supporting existing or new</u> <u>design loads.</u>

American Concrete Institute

Structural Evaluation – Analysis

 6.2.3 - If an analysis is required, the structural assessment shall document the requirements of 6.2.2 and (a) through (c).

(a) As-measured structural member section properties and dimensions.

(b) The presence and effect of any alterations to the structural system.

(c) Loads, occupancy, or usage different from the original design.

American Concrete Institute

Cross Section

Inverted tee

Structural Analysis – Original Loading

American Concrete Institute

Chapter 6 – Default Strength

Material properties
 Concrete (Table 6.3.1a)

Time frame	Footings	Beams	Slabs	Columns	Walls
1900-1919	1000 psi	2000 psi	1500 psi	1500 psi	1000 psi
1920-1949	1500 psi	2000 psi	2000 psi	2000 psi	2000 psi
1950-1969	2500 psi	3000 psi	3000 psi	3000 psi	2500 psi
1970-present	3000 psi				

Chapter 6 – Default Strength

Material properties
 Steel (Table 6.3.1b)

Time frame	Grade	33	40	50	60	65	70	75
	F _{y,min} (ksi)	33	40	50	60	65	70	70
	F _{t,min} (ksi)	55	70	80	90	75	80	100
1911-1959		Х	Х	Х		Х		—
1959-1966		Х	Х	Х	Х	Х	Х	Х
1966-1972			Х	Х	Х	Х	Х	—
1972-1974		—	Х	Х	Х	Х	Х	—
1974-1987		—	Х	Х	Х	Х	Х	—
1987-present			Х	Х	Х	Х	Х	

Calculated Capacity – Historic Values

Flexural strength
 Concrete: 2,000 psi
 Steel: 33 ksi
 Demand: -13 kip-ft

Φ: 0.9 (evaluation) Capacity: -16.0 kip-ft D/C: 0.81

Beam okay

Structural Analysis – Revised Loading

Calculated Capacity – Historic Values

Flexural strength
 Concrete: 2,000 psi
 Steel: 33 ksi
 Demand: -19.8 kip-ft

Φ: 0.9 (evaluation) Capacity: -16.0 kip-ft D/C: 1.24

Strengthen beam

Determine Material Strength (Testing)

Concrete cores

$$n = 8$$

 $\bar{f}_c = 6,200 \text{ psi}, V = 0.15$

• § 6.4.3-equivalent specified concrete strength

$$f_{ceq} = 0.9\bar{f_c} \left| 1 - 1.28 \sqrt{\frac{(k_c V)^2}{n}} + 0.0015 \right|$$

 $f_{ceq} = 5,100 \text{ psi}$

Measured dimensions of beam

Determine Material Strength (Testing)

Steel coupons

n = 4 $\bar{f}_y = 40,000 \text{ psi}, V = 0.05$

- § 6.4.6-equivalent specified yield strength (reinf.) $f_{yeq} = (\bar{f}_y - 3500)e^{-1.3k_s V}$ $f_{veq} = 33,217 \text{ psi}$
- Measured locations of bars

Calculated Capacity – Tested Values

Flexural strength
 Concrete: 5,100 psi
 Steel: 33 ksi
 Demand: -19.8 kip-ft

Φ: 1.0 (evaluation) Capacity: -18.1 kip-ft D/C: 1.09

Strengthen beam

Repair

 Flexural strength Concrete: 5,100 psi Steel: 33 ksi Demand: -19.8 kip-ft 6" (2) layers of FRP 9¹/₂" 21⁄2"

American Concrete Institute

Repair

External Reinforcing Systems

 5.5.1 For repairs achieved with unprotected external reinforcing systems, the required strength *U* of a structure without repair shall be at least equal to the effects of factored loads in Eq. (5.5.1).

 $U_{ex}^{3} 1.2D + 0.5L + A_{k} + 0.2S$ (5.5.1)

American Concrete Institute

Key Concepts

Evaluation based on historic values Quick check (ballpark) Evaluate element with standard φ-factors
Evaluation based on material testing More refined analysis Evaluate element with modified φ-factors (lower variability because material properties are known)

Key Concepts

 Repair design consistent with relevant standards (ACI 318, ACI 440.2R, etc.)
 Use standard φ-factors (because material properties will be unknown with repair work)

New Structure

Turner-Roberts Recreation Center

American Concrete Institute

Project Background

- Construction in 2008
- 7,700 sf joint-use facility
- Reinforced-concrete beams, drilled piers, and steel joist roof
- Indoor gymnasium, multipurpose rooms, weight room, and other rooms

Zoning of Structure

American Concrete Institute

Problems at Turner-Roberts

- Problems identified in 2009
- Issues

 Hairline cracks in structure
 Carton void form filled
 Expansion clays
 Construction errors

 Center closed July 2011

Evaluate structure

Evaluation Approaches for Existing Structures

Analytical (sectional analysis based on construction drawings)
Experimental (load test) ACI 437

Demolition of Structure

562 Load Test Procedures – Two Types

Monotonic

Apply load in four equal increments and measure response
Hold load for 24 hours
Measure response and unload load
Measure final response

Acceptance criteria
 Evidence of failure
 Maximum and residual deflections

American Concrete Institute

Load Test Procedures

Cyclic

Acceptance criteria
 Evidence of failure
 Deviation from linearity and permanency ratio

American Concrete Institute

Monotonic Load Test

- Performed phased approach
- Test Load Magnitude (TLM) $TLM = 1.0 \times D_W + 1.1 \times D_S + 1.6 \times L$
- Superimposed load (ATL)
 166 psf (32 inches of water)

Monotonic Load Test

Performed phased approach

- Test Load Magnitude (TLM) $TLM = 1.0 \times D_W + 1.1 \times D_S + 1.6 \times L$
- Superimposed load (ATL)
 166 psf (32 inches of water)

Load Test

Behavior During Loading - Linear

Behavior After 24 Hour – Increase in Deflection

Behavior During Unloading

American Concrete Institute

Key Concepts

Monotonic testing is essentially a proof test Slower to perform (24-hr hold) Generally easy to perform (water, sand, etc.) Criteria is based on deflections
Cyclic testing is more of a performance standard Faster to perform with hydraulics (no 24-hr hold)

Can be difficult to perform (hydraulics need to react against something)

Criteria is based on stiffness

Thank you

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org

