

Effect of fly ash and silica fume on time to corrosion initiation for specimens exposed long term to seawater

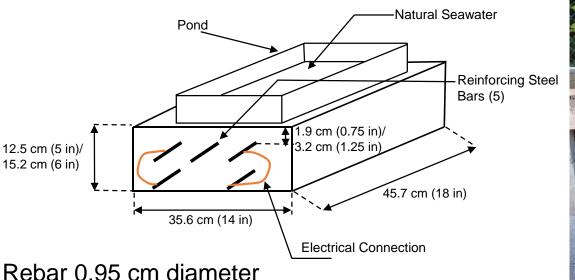
Francisco J. <u>Presuel</u>-Moreno¹, Eric I. Moreno²

Florida Atlantic University, Florida, USA
 Universidad Autonoma de Yucatan, Mexico

Background

- Florida Bridges prone to chloride induced corrosion once chloride threshold is reached
- Silica Fume and Fly Ash are two of the admixtures commonly used to reduce concrete chloride diffusivity
- Studies with binary mixes, low water to cementitious ratio, exposed to fresh seawater in warm weather are rare
- Good correlation chloride diffusivity (D_{app}) vs. resistivity on lab saturated conditions has been reported

Single and Binary Concrete Mixes Prepared Values are percentages of FA* and SF*,#


Mix Design	Fly Ash	Silica Fume	Calcium Nitrate
Designation	percent	Percent	l/m ³
AO	0	0	0
CO	0	0	19.8
FA20	20	0	0
FA35	35	0	0
FA50	50	0	0
FA35-N	35	0	19.8
SF06	0	6	0
SF15	0	15	0
SF27	0	27	0
SF15-N	0	15	9.9

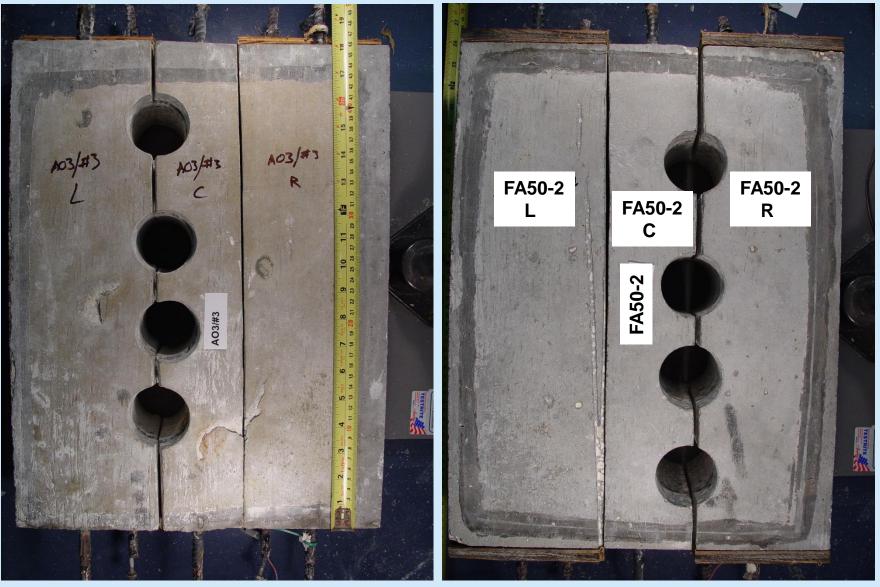
* %FA and %SF content are % of FA/(c+FA) and SF/(c+SF) respectively

Silica fume used was in slurry silica fume

		FA20	FA35	FA50	FA35N
Concrete	Cement, kgs	90.8	73.8	56.7	73.8
	Fly Ash, kgs	22.7	39.7	56.7	39.8
Composition	Calcium Nitrite, kgs	0	0	0	5.2
•	Water, kgs	27.6	27.8	28.0	24.4
and Selected	Coarse Aggregates, kgs	287.4	287.4	287.4	288.4
Properties	Coarse Aggregates, % excess moisture	2.96	2.3	2.3	2.9
Ποροιασο	Fine Aggregates, kgs	212.4	206.0	199.6	203.8
	Fine Aggregates, % excess moisture	2.68	3.68	3.68	3.0
	Unit Weight, kgs/m ³	2,263.6	2,247.6	2,231.6	2,231.6
Fly ash type F	w/cm ratio	0.367	0.37	0.37	0.363
was used	RCP Avg. 91 Days, C	989	713	731	NA
	Strength Avg. 28 days (MPa)	45.5	42.7	36.3	34.2
	Strength Avg. 91 days (MPa)	53.2	52.9	45.6	44.5
	Cementious per unit volume, kgs/m ³	399	400.4	401	396
Silica Fume		SF06	SF15	SF27	SF15N
slurry was used.	Cement, kgs	110.2	104.4	96.6	104.4
Part of the SF	Silica Fume, kgs	7.2	19	35.6	19
mass counted	Calcium Nitrite, kgs	0	0	0	2.68
	Water, kgs	25	18.8	10.2	16.6
towards the	Coarse Aggregates, kgs	288.4	288.4	288.4	288.4
water	Coarse Aggregates, % excess moisture	2.65	2.7	2.9	2.9
	Fine Aggregates, kgs	217.4	215.2	212.2	215.2
Target	Fine Aggregates, % excess moisture	2.680	2.68	2.68	2.7
-	Unit Weight, kgs/m ³	2,279.6	2,273.2	2,262.0	2,265.2
cementitious in	w/cm Ratio	0.37	0.367	0.368	0.365
kg/m ³ was 400	RCP Avg. 91 Days, C	2061	720	598	868
kg/m ³	Strength Avg. 28 days (MPa)	48.7	50.8	52.6	48.8
N9,	Strength Avg. 91 days (MPa)	52.6	52.2	53.0	51.7
	Cementious per unit volume, kgs/m ³	397	397.6	399	396

Specimen Geometry and Number of Samples

Number of samples with reinforcements per mix and height/cover

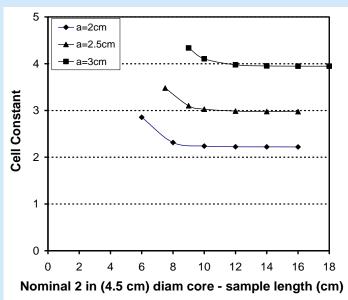

Height/ Cover	AO	СО	FA20	FA35	FA50	FA35N	SF06	SF15	SF27	SF15N
12.7 /1.9 cm	5	4	4	4	4	3	3	3	3	3
15.2 /3.2 cm	3		3	3	3					

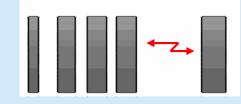
Samples exposed to 1 week with seawater, 1 week no solution Since 1995, recently reached 7600 days (20.75 years) of exposure

Experimental

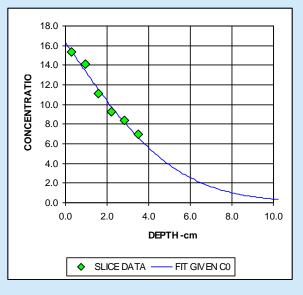
- Potential vs. Time
- Selected specimens were terminated (at 5700, 6020 and 6230 days). On day 5700, one sample per mix was terminated.
- Top row of rebars were exposed for visual examination
- Concrete segments above exposed rebars were milled (avoiding corrosion products) and to measure the chloride concentration above the rebar trace (Modified FDOT method - smaller mass)
- Concrete cores obtained from selected terminated specimens (some sliced for chloride profiles others used for resistivity)

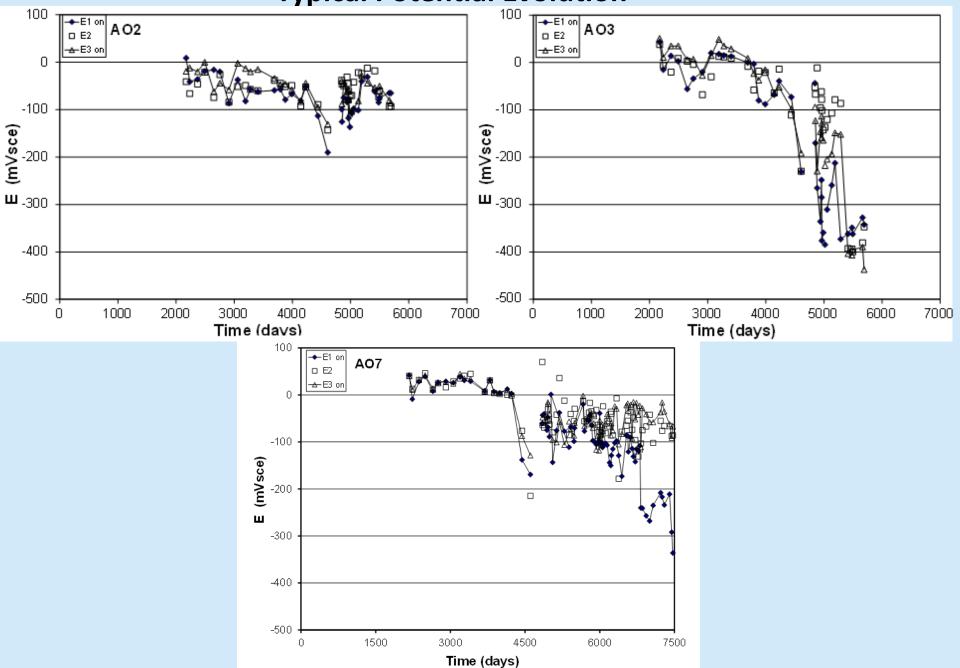
Top View – Representative Terminated Samples after coring and segmenting in 3 pieces


Tests Performed on Concrete Cores

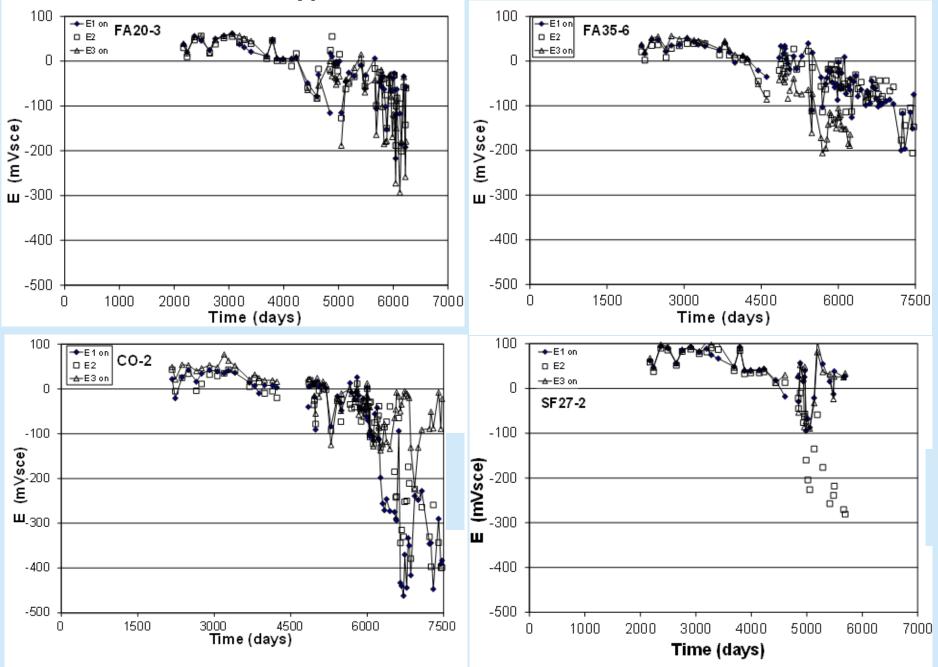

- Resistivity vs. Time (as moisture increased)
- Chloride Profiles from concrete cores (FDOT method)
- D_{app} calculated from chloride profiles

Tests performed on obtained concrete cores

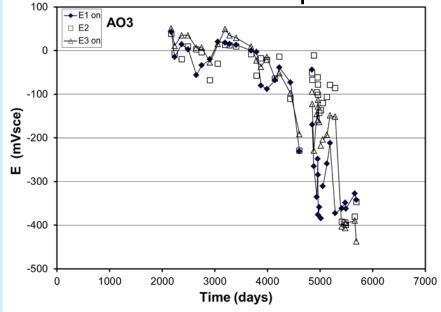

Resistivity as per FM5-578 and values shown include geometry correction

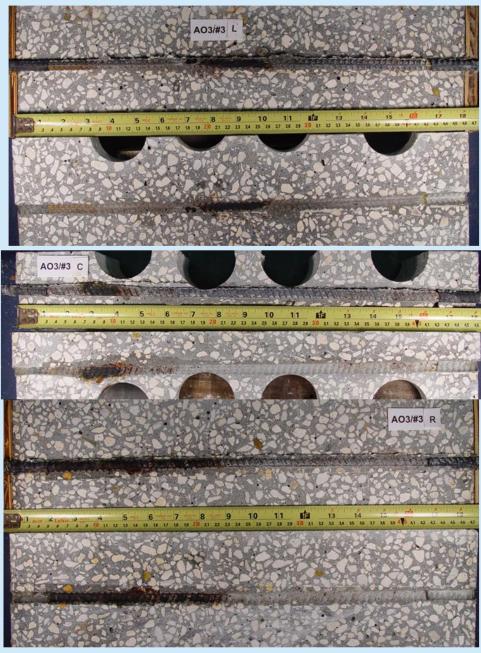

Cores Sliced with wet saw. Six Slices Cut spacing 0.635 cm (0.25") Each slice pulverized and

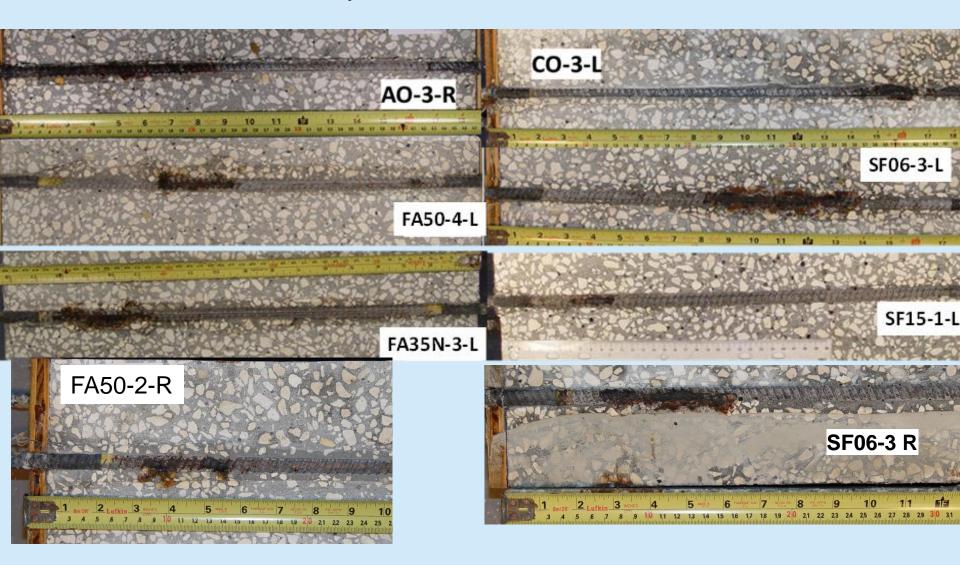
Chloride titration following FDOT FM5-516 This is total acid soluble chlorides method

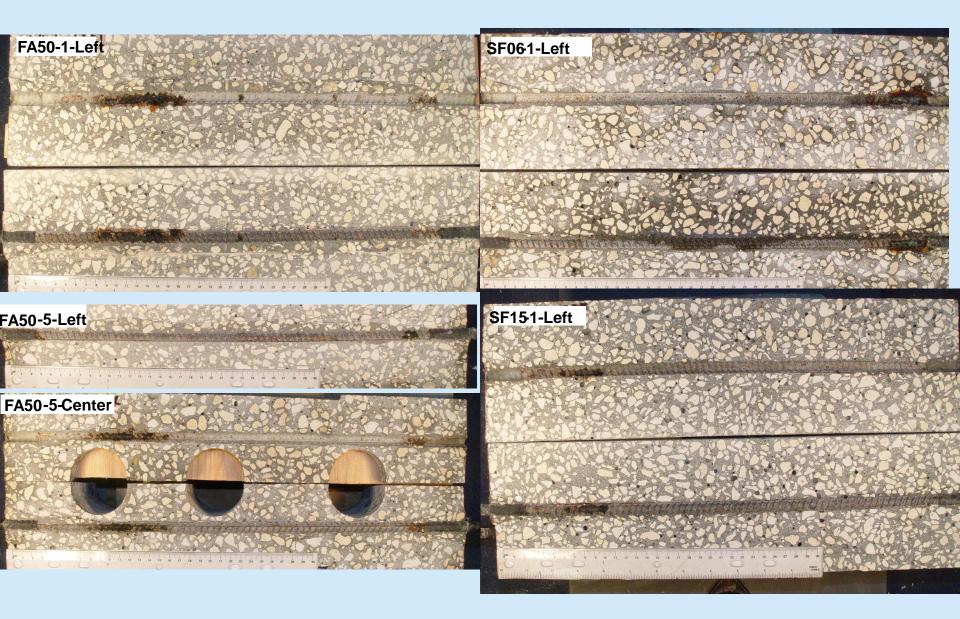


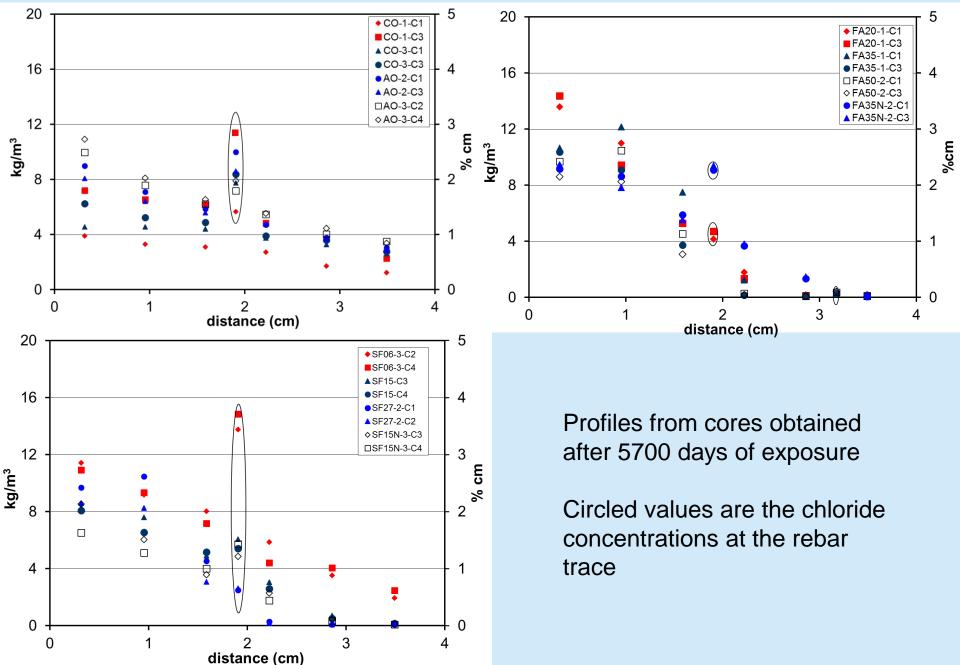
D_{app} fitted from chloride profile


Typical Potential Evolution


Typical Potential Evolution


Corrosion Spread on Selected Terminated Rebars

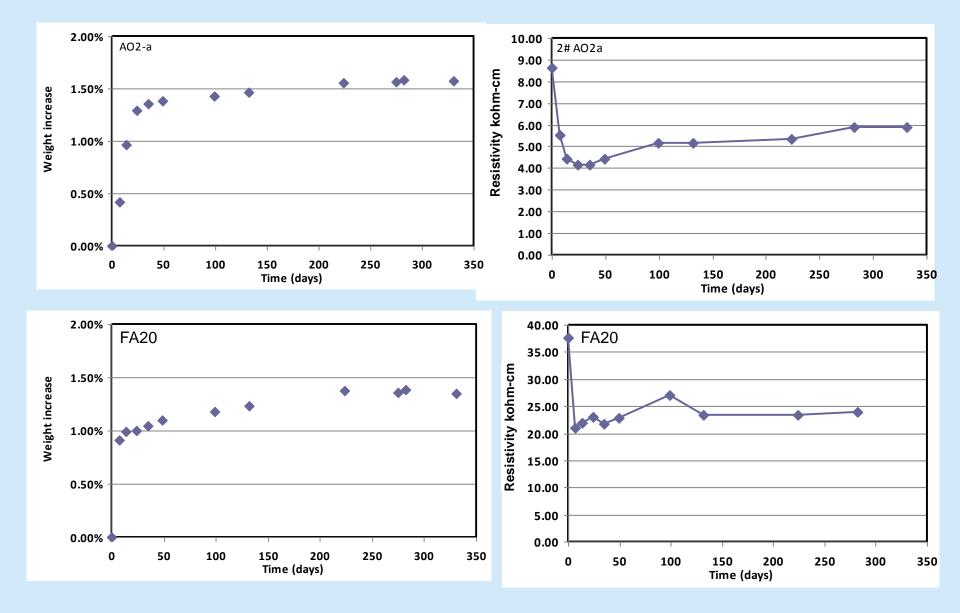



Corrosion Spread on Selected Terminated Rebars

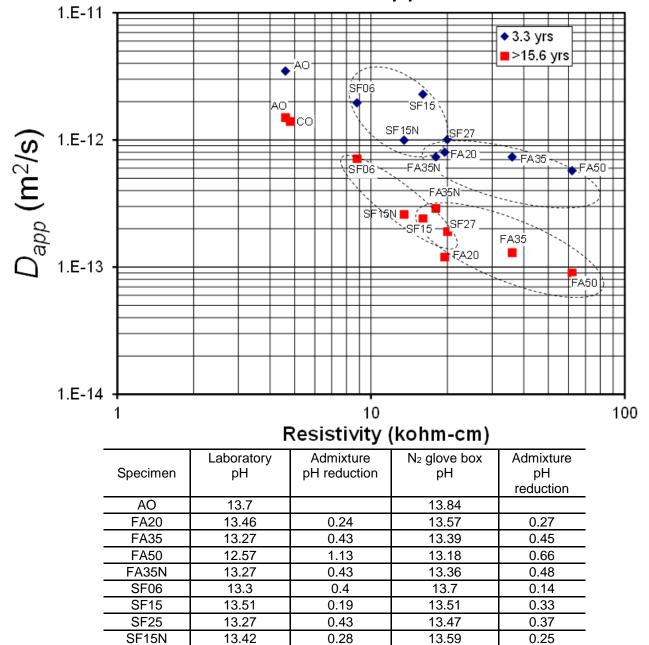
Corrosion Products on Selected Rebars

Chloride Profiles and Concentration at the Rebar Surface

CF Concentration measured at the Rebar Trace (kg/m³)


				-		-								
Specimen	Lef	t	Cen	nter	Rigl	ht		Specimen	Le	eft	Cer	nter	Rig	ght
AO1	NA	Υ	NA	NA	NA	Y		FA20-1	4.3	Ν	3.4	Ν	4.7	Ν
AO2	8.0	Υ	7.9	Y	10.0	Y		FA20-3	6.4	Y	2.9	Y	3.3	Y
AO3	6.9	Υ	7.9	Y	6.7	Y		FA35-1	0.3	Ν	0.3	Ν	0.2	Ν
AO8	5.8	Υ	7.4	Ν	8.9	Y		FA35-6	С	NA	С	NA	5.5	Y
CO1	6.8	Ν	4.8	Y	5.4	Ν		FA50-1	1.2	Y	NA	Y	1.4	Y
C03	6.4	Υ	8.4	Y	8.4	Y		FA50-2	0.4	Ν	0.4	Ν	0.3	Ν
SF06-1	7.2	Υ	8.1	Ν	6.4	Ν		FA50-4	3.1	Y	С	NA	С	NA
SF06-3	14.8	Υ	14.9	Y	11.6	Y		FA50-5	2.2	Y	1.6	Y	1.9	Y
SF15-1	8.2	Υ	7.9	Y	6.8	Y		FA50-7	3.5	Y	1.3	Y	3.3	Y
SF15-2	6.1	Y	5.0	Y	5.2	Y	-	FA35N-1	8.9	Y	7.6	Y	6.9	Y
SF27-2	2.6	Ν	2.4	Y	2.5	Ν		FA35N-2	9.0	Y	8.9	Y	9.4	Y
SF15N-3	4.1	Ν	5.7	Ν	NA	Ν	_	FA35N-3	9.9	Y	С	NA	С	NA

Y- Corroding, N – No Corroding, C – Continue, NA – Not available

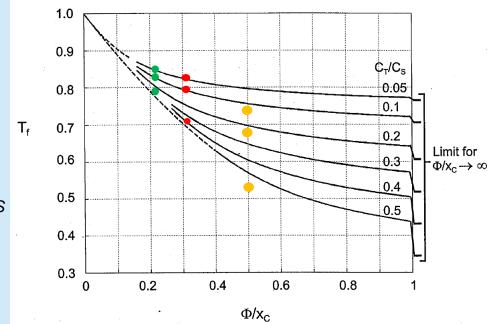

Minimum and average [Cl⁻] (kg/m³) and %cm at the rebar trace on corroding rebars

Mix ID	Minimum	Average	Mix ID Minimum		Average
AO	5.8 [1.45%]	7.7 [1.92%]	СО	6.4 [1.62%]	7.7 [1.95%]
FA20	2.9 [0.75%]	4.2 [1.05%]	SF06	7.2 [1.81%]	12.1 [3.04%]
FA35	5.5 [1.37%]	5.5 [1.37%]	SF15	5.0 [1.53%]	6.5 [1.63%]
FA50	1.4 [0.29%]	2.2 [0.54%]	SF27	2.4 [0.60%]	2.4 [0.60%]
FA35N	6.9 [1.74%]	8.7 [2.2%]	SF15N	>5.7 [>1.46%]	>5.7 [>1.46%]

Examples of wt % change vs. time and Resistivity vs. time

 $ho_{
m vs.}$ $D_{
m app}$

Effect of C_T , D_{app} , C_S on time to corrosion initiation for more traditional covers and rebar diameter


The time to corrosion initiation was calculated for a structure having rebars of 1.6 cm (#5) diameter with a concrete covers of 5 cm (2 inches) or 7.5 cm (3 inches) using the calculated D_{app} and C_s values, and including rebar presence effect.

	C⊤ Kg/m³	D _{app} × 10 ⁻¹² m ² /s	Cs Kg/m³	C _T /C _S
AO	6.2	1.5	15.6	0.40
FA20	3.2	0.13	30	0.11
FA50	1.6	0.09	30	0.05

Assumed parameter based on measured and fitted values

Derating factors for the geometry and C_T/C_S

Cover	Diameter/cover	OPC	FA20	FA50
5 cm	• 0.32	0.71	0.79	0.82
7.5 cm	• 0.21	0.79	0.82	0.84

Φ=Rebar diameter Xc=concrete cover

Effect of C_T , D_{app} , C_S on time to corrosion initiation for more traditional covers and rebar diameter

Time to corrosion initiation in years including rebar presence effect

Cover	OPC	FA20	FA50
5 cm	25.9	90.9	90.2
7.5 cm	64.8	211.6	201.6

Time to corrosion initiation in years including rebar presence effect Model and Experiment

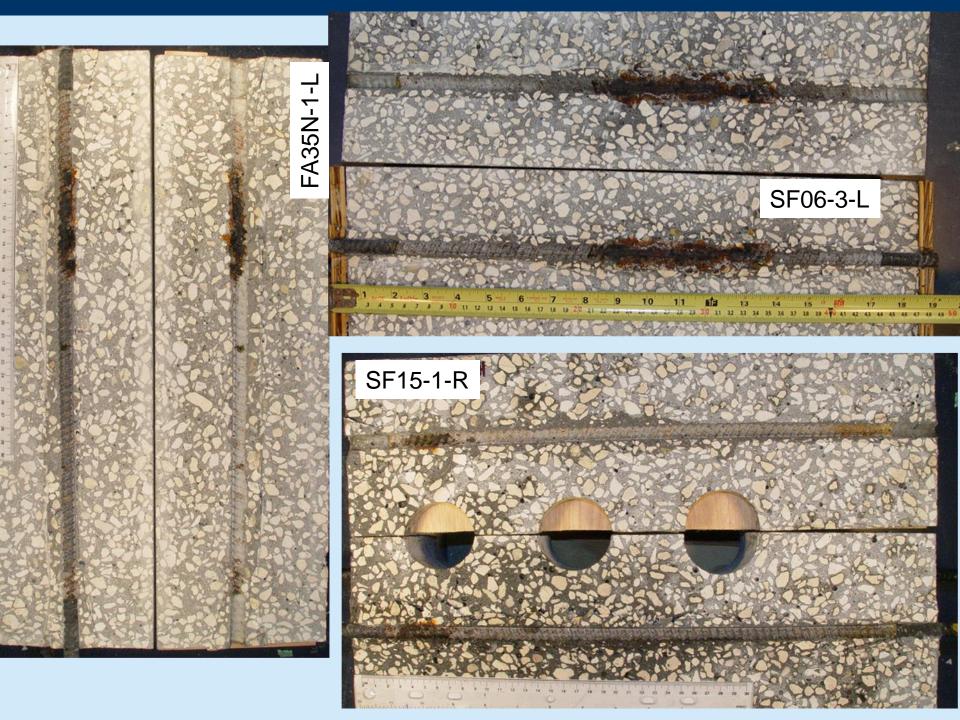
Ст	Cs 1st layer	C _T /C _S	D _{app}	Derating	Ti (years)	Ti (years)
kg/m³	kg/m³		m²/s ×10 ⁻¹²	Factor	Model	Experiment
7.4	12	0.58	1.50	0.53	11	15
3.4	15	0.25	0.13	0.67	21	17
1.6	11	0.15	0.09	0.73	20	17

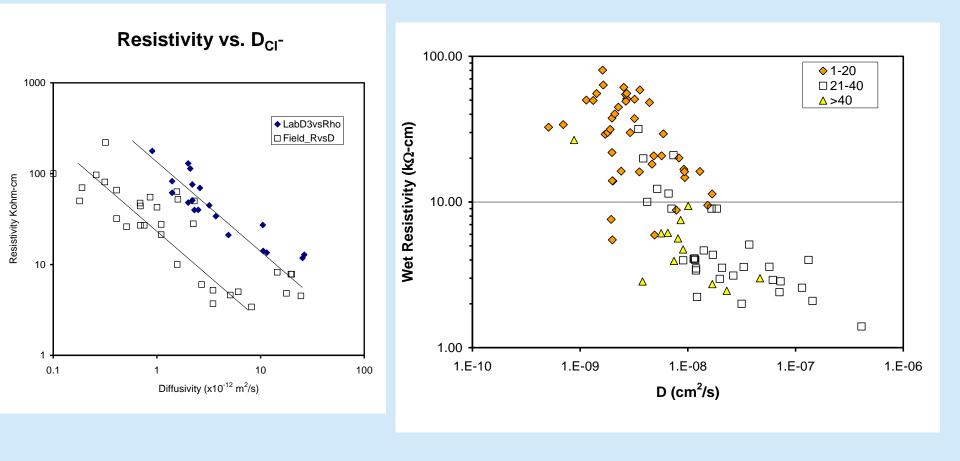
Left column C_T values in kg/m³ and %cm

7.4 [1.85%cm], 3.4 [0.85 %cm], and 1.6 [0.4 %cm]

Conclusions

- The Dapp of concrete mixture prepared with FA ↓ ~ one order of magnitude (at least 5X) from 3.3 yr to 16 yr. A more modest reduction in Dapp was observed on samples with SF.
- The [CI-]_{tmin} suggest C_T on FA50 than other FA groups. Corrosion initiated on more rebars from specimens with 50% FA, than OPC specimens due in part to the lower chloride threshold.
- D_{app} SF mixes are somewhat larger than D_{app} FA mixes
- A good correlation was observed between ρ and D_{app} .
- A reduction in C_T as FA % ¹ needs to be included for service life computations, in addition to the lower *Dapp* that is associated with FA presence. Rebar presence effect if cover is small.


Thank you for you attention, Questions?


Acknowledgments

The authors are indebted to the Florida Department of Transportation (FDOT) for financial support of this research. The opinions expressed in presentation are those of the authors and not necessarily of the FDOT. The authors also acknowledge Dr. Hartt, undergraduate and graduate students that have assisted with this project.

Resistivity vs. D_{app}

Sagues (2001), Presuel(2010), Paredes(2007)