Proportioning for Mass Concrete

Darrell F. Elliot,FACI Technical Service Manager Buzzi Unicem USA

What is Mass Concrete?

ACI defines Mass Concrete as "any volume of concrete with dimensions large enough to require that measures be taken to cope with generation of heat from hydration of the cement and attendant volume change to minimize cracking." ACI does not specify an exact minimum thickness, depends on many factors

Traditional Mass Concrete Mixes

Low strength requirements 56 or 90 days to achieve strength Very large coarse aggregate Very low cement contents **Type IV or Type II(MH) High SCM replacements**

Mat Foundations, Houston

Volume PSI

ENRON Building11,0005,0005 Houston Center8,5006,0001000 Main12,000

M D Anderson (2) 12 000

Mass Concrete

For mass placements, ACI 207 and U. S. Army Corps of Engineers recommend:

Cement or combination of cement with GGBFS and/or fly ash that achieves a maximum Heat of Hydration of 70 cal/gm at 7 days.

Critical Temperature Limits

$T_{max} < 165^{\circ}F(75^{\circ}C)$

$\Delta T < 35^{\circ}F(20^{\circ}C)$

Why these Limits? $T_{max} < 165^{\circ}F(75^{\circ}C)$ Potential to bypass ettringite phase, resulting in DEF

 $\Delta T < 35^{\circ}F(20^{\circ}C)$

Thermal Stress of different expansion & contraction Heating and CoolingInitial heat generatedAs outside coThe quicker the peak,remains hot.the higher the peakAs inside coo(less cooling time)contracts & p

Early Condition: Large Heat Generation, Little Time for Cooling As outside cools, inside remains hot. As inside cools, it contracts & pulls away from perimeter, cracks

> Later Condition: Cooling from the Outside

Time-Temperature Plot

Cracking in Top of Pile Cap

Heat Energy

Calculating the change in temperature in a system may be accomplished by using the following formula:

Change in Temperature = <u>Heat gained or lost</u>. Mass x Specific Heat

Specific heat is defined as the amount of heat energy required to raise 1 g of a substance by 1° Celsius.

TypesOfPortlandCementASTMC150INormal

II Moderate Sulfate Resistance Optional Moderate Heat (MH) III High Early Strength IV Low Heat of Hydration

V High Sulfata Posistanco

Fly Ash Reduces Heat

Fly Ash Reduces Heat

"The temperature rise can be reduced by using fly ash as a portion of the cementitious material in concrete."

Class F fly ashes almost always reduce heat.

However, be aware that some Class C fly ash may reduce heat, some are heat neutral, and some actually increase heat.

Slag Cement Reduces Heat

Fig. 1.4—Rate of heat liberation of cements with and without GGBF slag at 27 C (80 F) (Roy and Idorn 1982) Slag Cement Advantages Lower Heat of Hydration, fewer calories/gram of cement

Higher strength performance, fewer grams of cement, hence less total heat generated

US Army Corps of Engineers Mass Concrete Application

Davis Pond Diversion Project Luling, LA 1999

Heat of Hydration with Type II

ASTM & U S Army Corps of Engineers limit heat to 70 calories/gram at 7 days.

LAMBERT ST. LOUIS INTERNATIONAL AIRPORT ST. LOUIS. MISSOURI

WELCOME WILLKOMMEN 御史 ドミ BIENVENUE BIENVENIDO

Insulating Values, R

Extruded Polystyrene 5.00/inch 2 inches x 5.00 per inch = 10.00

Normal Weight Concrete

0.11/inch

R-10 / R-0.11 per inch = 91 inches 4" Polystyrene is equivalent to 7'7" of Concrete

No successful and store the second						
Mix	Aggregate	1 Day	2 Day	7 Day	14 Day	28 Day
Description		Average	Average	Average	Average	Average
545 Mass-4	57 Limestone	2359	3657	4983	5314	5454
545 Mass-1A	57 Limestone	1302	2638	3734	3905	4475*
545 Mass-2	57 Limestone	1828	3477	4476	4958	5145
500 Mass-1B	467 Gravel	1143	2665	4104	4643	4824
545 Mass-1B	467 Gravel	1716	3334	4906	5088	5398
590 Mass-1B	467 Gravel	1451	2904	4332	4857	4846
500 Mass-3	57 Gravel	1699	3152	4490	4838	5351
545 Mass-3	57 Gravel	1591	2933	4201	4608	5173
590 Mass-3	57 Gravel	1543	3026	4464	4913	5389

Mix	Aggregate	Ambien t	Mix	Center	Face
Description		Temp	Temp	Max T	Max T
545 Mass-4	57 Limestone	85	76		
545 Mass-1A	57 Limestone	85	76	144	139
545 Mass-2	57 Limestone	95	77		
500 Mass-1B	467 Gravel	85	76	133	132
545 Mass-1B	467 Gravel	90	78	137	135
590 Mass-1B	467 Gravel	90	78	141	133
500 Mass-3	57 Gravel	95	82	140	137
545 Mass-3	57 Gravel	95	79	135	135

Dynergy Power Plant

Maximum In-Place Concrete Temperature Estimator

Portland Type I & Grade 100 Slag

Thickness Length Width Volume 10Feet295Feet133Feet14,531Yards³

		#2	#3	#4	
	5	80	75	70	٥F
2	16	216	216	216	Lb/Cu.Yd.
3	24	324	324	324	Lb/Cu.Yd.
39	33 3	933 3	933 3	3933	Lb/Cu.Yd.
6	0	60	60	60	Cal/gm
6	0	60	60	60	Cal/gm
	1	#2	#3	#4	
61	.71 6	1.71 6	1.71 6	1.71	oF
8	5.0 8	30.0		70.0	oF
14	6.7 1	41.7 1	36.7 1	31.7	o F

Patriot Engineering Cayuga FGD Project Middle Section: Absorber Building

Logger			
S/N:	4048284		
Job:	CAYUGA FGD		
Location:	NE CORE ABSORBR		
Logger ID:	TPL-02-1H28D		
Run State:	Locked		
Start Date:	9/27/2005 10:30:34 AM		
Elapsed Date (Start Date + Elapsed Time):	10/18/2005 1:59:34 PM		
Elapsed Time (hrs):	507.48		
Data Interval (min):	60		
Number of readings:	508		

Events

Time (hrs)	Event Description	Tomperature (°F)		
0.00	MIN TEMPERATURE			
49.37	MAX TEMPERATURE	134.6		
507.48	LAST READING	107		

LA Hwy 1 Bridge at Fourchon

Maximum In-Place Concrete Temperature Estimator 4000 psi 50% Type I/II Portland, 50% G120 Slag + 5% Silica Fume

Thickness8FeetLength67FeetWidth47FeetVolume933Yards³

Ti	Initial Concrete Temp.
P	Mass of Portland Cement
S	Mass of Slag Cement
F	Mass of Silica Fume
W	Unit Weight of Concrete
H ₁	Heat of Hydration - PC
H ₂	Heat of Hydration - SC
H ₃	Heat of Hydration - SF
a state of the	Initial Tomporature

T_i Initial Temperature
 ΔT Temperature Gain
 T_{max} Maximum Temperature

#1	#2	#3	#4	Inch- Pound
40	60	80	90	٥F
300	300	300	300	Lb/Cu.Yd.
300	300	300	300	Lb/Cu.Yd.
30	30	30	30	Lb/Cu.Yd.
3907	3907	3907	3907	Lb/Cu.Yd.
61.5	61.5	61.5	61.5	Cal/G
61.5	61.5	61.5	61.5	Cal/G
61.5	61.5	61.5	61.5	Cal/G
40.0	60.0	80.0	90.0	٥F
74.3	74.3		74.3	٥F
114.3	134.	154.3	64.3	٥F

Sempra – Cameron LNG Compressor Foundations

Cement Plant

Type I/II

80.7 50% Slag, 25% FAsh 58.2

50.8

		Scenario	Scenario	Scenario	Scenario	Inch-Pound
		#1	#2	#3	#4	Units
T _i	Initial Concrete Temp.	70	75	80	85	٥F
Р	Mass of Portland Cement	132	132	132	132	Lb/Cu.Yd.
S	Mass of Slag Cement	265	265	265	265	Lb/Cu.Yd.
F	Mass of Fly Ash	133	133	133	133	Lb/Cu.Yd.
W	Mass of 1 yd ³ of Concrete	3877	3877	3877	3877	Lb/Cu.Yd.
H_1	Heat of Hydration, Portland	58.2	58.2	58.2	58.2	Cal/G
H_2	Heat of Hydration, Slag	58.2	58.2	58.2	58.2	Cal/G
H ₃	Heat of Hydration, Fly Ash	58.2	58.2	58.2	58.2	Cal/G
_						
T _i	Initial Temperature	70.0	75.0	80.0	85.0	٥F
ΔT	Temperature Gain	50-50	59.60	59.60	59.60	٥F
T _{max}	Maximum Temperature	129.6	134.6	139.6	144.6	٥F

The combined chemical composition of the total cementitious system of 25% Type I/II Portland Cement, 50% Grade 120 Slag Cement, and 25% Class F Fly Ash ratio of SO₃ to Al_2O_3 is 0.118. This is far below the threshold of potential for Delayed Ettringite Formation (DEF). DEF typically occurs in mixes that reach temperatures in excess of 165°F and have SO₃ to Al_2O_3 ratios in excess of 0.45 to 0.70. This is the reason for limiting maximum temperatures in place to 165°F.

NCRA Refinery

C

77.5

79.5

83.1

Cement Plant Type I/II 67.8 25% C Ash S 64.5 25% C Ash A

NCRA Refinery

82.0

70.0

69.4

64.4

67.9

100% Type I/II 25% Slag 37.5% Slag 50% Slag 30% Slag, 20% C Ash S

High Strength Concrete

<u>Manhattan / BEERS</u> <u>Reliant Stadium</u>

Houston NFL Stadium

4 Super Columns 12'6" x 25'-75' x 150' Supporting 7,000,000 pounds Design Strength: 13,000 psi

Houston NFL Stadium

Strength of 2-Way 50/50 & 3-Way 50/30/20 Mixes

Missouri DOT Mass Concrete Application

Page Avenue Bridge Creve Couer Lake St. Louis, MO

Foundation: 72' long x 35' wide x 13' deep

Reinforced with #14 bars 5" on center

Required low heat of hydration to prevent thermal stress

Limited heat of hydration to 60 cal/gram

No Type IV low-heat cement was available

Tested Type II and Type II(Moderate-Heat) With Slag Cement at various %

Heat of Hydration With Cape Type I/II

ASTM & U S Army Corps of Engineers limit heat to 70 calories/gram at 7 days.

Heat of Hydration with Cape Type II(MH)

ASTM & U S Army Corps of Engineers limit heat to 70 calories/gram at 7 days.

Maximum Temperature in Place

Mat Foundations, Houston

 ENRON Building
 11,000

 5 Houston Center
 8,500

 1000 Main
 12,000

 M D Anderson (2)
 12,000
Calories/Gram <u>Mixture</u> <u>Day</u>

100% Type I/II 87.47

75.70

7-Day

28-

70% T I/II + 30% Class C Fly Ash 77.73 89.67

70% T I/II + 30% Class F Fly Ash 75.32 71.38

50% Type I/II + 30% Slag

70.17

ENRON Building

Houston, TX 11,000 Cubic Yard Mat Foundation

5,000 psi with Low Heat

550 # Total Cementitious 50% Portland 30% Slag 20% Fly Ash MR W/R

5 Houston Center

Houston, TX

8,500 cubic yard

Mat Foundation

6,000 psi with Low Heat

517 # Total Cementitious 50% Portland 30% Slag 20% Fly Ash MR W/R

Specification: 6,000 psi (a) 56 Days

Performance:

6,000 + psi @ 14 Days Max Temp - 130°F

City of Austin

Austin, TX

45' tall x 50' wide x 3' thick

Chilling Towers

4,000 psi with Low Heat

517 # Total Cementitious **30%** Portland 35% Slag 35% Fly Ash MR W/R

Specification: 4,000 psi @ 28 Days

Performance:

5,500 + psi @ 28 Days

Specification: T < 165°F, ΔT < 35°F

Performance: $T < 139^{\circ}F, \Delta T < 25^{\circ}F$ with Ambient = 112°F

