ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 2212 Abstracts search results

Document: 

SP-361_02

Date: 

March 1, 2024

Author(s):

Michelle A. Helsel, Milena Rangelov, Robert Spragg, Michael Praul

Publication:

Symposium Papers

Volume:

361

Abstract:

To support a rapid integration of sustainability principles into paving concrete practice, this study provides a closer look into readily implementable cement and concrete decarbonization strategies. To do so, this study relies on combined stakeholder involvement, quantitative analysis using Life Cycle Assessment (LCA), and the state-of-the-practice in the US paving concrete industry to understand merits of each solution. The results indicate that concrete mix design optimization is a promising, yet not widely applied solution that can reduce costs, enhance durability, and provide average carbon emissions savings of 14 percent. Use of supplementary cementitious materials (SCM) is another solution with multiple benefits, however, the use of SCM is already widely implemented across the USA. Industry-wide improvement in cement carbon footprint due to energy efficiency can provide additional savings of up to 10 percent. Quantifying the environmental footprint of concrete is critical to inform decision-making and enable more sustainable outcomes.

DOI:

10.14359/51740604


Document: 

SP-360_34

Date: 

March 1, 2024

Author(s):

Adi Obeidah and Hani Nassif

Publication:

Symposium Papers

Volume:

360

Abstract:

Developments in the prestressed concrete industry evolved to incorporate innovative design materials and strategies driven towards a more sustainable and durable infrastructure. With steel corrosion being the biggest durability issue for concrete bridges, FRP tendons have been gaining acceptance in modern prestressed technologies, as bonded or unbonded reinforcement, or as part of a “hybrid” system that combines unbonded CFRP tendons and bonded steel strands. Assessments of the efficacy of hybrid-steel beams, combining bonded and unbonded steel tendons. in the construction of segmental bridges and in retrofitting damaged members has been established by several researchers. However, limited research has been conducted on comparable hybrid prestressed beams combining CFRP and steel tendons (hybrid steel-cfrp beams). This paper provides an insight on the flexural behaviour of eighteen prestressed beams tested under third-point loading until failure with the emphasis on the tendon materials (i.e., CFRP and steel) and bonding condition (i.e., bonded, unbonded). In addition, a comprehensive finite element analysis of the beams’ overall behaviour following the trussed-beam methodology is conducted and compared with the experimental results. Results show that hybrid beams, utilizing CFRP as the unbonded element maintained comparable performance when compared to hybrid steel beams. The results presented in this paper aim to expand the use of hybrid tendons and facilitate their incorporation into standard design provisions and guidelines.

DOI:

10.14359/51740646


Document: 

SP-360_47

Date: 

March 1, 2024

Author(s):

Bartosz Piątek and Tomasz Siwowski

Publication:

Symposium Papers

Volume:

360

Abstract:

Due to a dynamic development of infrastructure, engineers around the world are looking for new materials and structural solutions, which could be more durable, cheaper in the life cycle management, and built quickly. One of prospective solutions for building small-span bridges can be precast lightweight concrete reinforced with glass fiber-reinforced polymer (GFRP) rebars. Thanks to prefabrication, it is possible to shorten the construction time. Using lightweight concrete affects structure weight as well as transportation costs. GFRP rebars can make the structure more durable and also cheaper in terms of life cycle management costs. The paper focuses on the fatigue performance of a real-scale arch (10.0 m (33 ft) long, 1.0 m (3.3 ft) wide, and 2.4 m (7.9 ft) high) made of lightweight concrete and GFRP rebars (LWC/GFRP) in comparison with an arch made of normal weight concrete and typical steel reinforcement (NWC/steel). The fatigue loads ranging from 12 to 120 kN (2.7 to 27 kip) were applied in a sinusoidal variable manner with a frequency of 1.5 Hz. This research revealed that the NWC/steel arch exhibited significantly better fatigue resistance when compared to the LWC/GFRP arch. Differences in the behavior of the NWC/steel and LWC/GFRP models under fatigue load were visible from the beginning of the research. The LWC/GFRP model was exposed to fatigue loads, resulting in gradual deterioration at an early stage. This degradation was evident through stiffness being progressively reduced, leading to increased displacements and strains as the number of load cycles increased. The model did not withstand the fatigue load and was destroyed after approximately 390 thousand load cycles, in contrast to the NWC/steel model, which withstood all 2 million load cycles without significant damages or the stiffness being decreased. However, the prefabricated lightweight concrete arches with composite reinforcement seem to be an interesting alternative of load-bearing elements in infrastructure construction.

DOI:

10.14359/51740659


Document: 

SP-360_45

Date: 

March 1, 2024

Author(s):

C. Barris, F. Ceroni, A. Perez Caldentey

Publication:

Symposium Papers

Volume:

360

Abstract:

Serviceability checks in Reinforced Concrete (RC) elements involves the verification of crack width mainly aimed to limit the exposure of the steel reinforcement to corrosion and chemical attack and, thus, improve durability. Classical approaches for assessing the crack width in RC elements provide the calculation of two terms: 1) the average crack spacing, and 2) the average difference between the strain in the steel reinforcement and in the concrete in tension referred to the average crack spacing. A similar approach can be assumed valid also for RC elements strengthened with externally bonded Fiber Reinforced Polymer (FRP) materials, taking into account the additional tension stiffening effect provided by the external reinforcement.

This paper presents the comparisons of some existing code formulations for predicting crack spacing and crack width in RC elements with the experimental results of a database collected by the Authors and concerning tests on RC beams and ties externally bonded with different types and configurations of FRP materials. The paper is mainly aimed to check the reliability of the existing equations provided by codes in order to address the future assessment of reliable design provisions for cracking verifications in RC elements strengthened with FRP materials. The comparisons have evidenced, indeed, some useful issues for the design provisions: 1) larger scatter in the predictions of crack width than in crack spacing and, in particular, for ties, 2) limited effect of shrinkage on crack width, 3) necessity of taking into account the external reinforcement in crack spacing formulations, 4) good reliability of mechanical models for calculating cracks width.

DOI:

10.14359/51740657


Document: 

SP-360_44

Date: 

March 1, 2024

Author(s):

Raphael Kampmann, Carolin Martens, Srichand Telikapalli, and Alvaro Ruiz Emparanza

Publication:

Symposium Papers

Volume:

360

Abstract:

While reinforced concrete is one of the most used construction materials, traditional reinforcement steel may cause undesirable side effects, as corrosion and the associated volume changes can lead to damages in the concrete matrix and can cause spalling, which may significantly reduce the load-bearing capacity and service life of structures. Alternative reinforcement methods, such as glass or basalt fiber reinforced polymer rebars, can serve as a viable alter-native to reduce or eliminate some of the disadvantages associated with steel reinforcement. In addition to an increased tensile strength and a reduction in weight, fiber reinforced polymer rebars also offer a high corrosion resistance among other beneficial properties. Because these materials are not fully regulated yet and the durability properties have not been conclusively determined, further research is needed to evaluate the material durability properties of FRP rebars. To determine the durability properties of GFRP and BFRP rebars in cold climates, the freeze-thaw resistance of these materials was evaluated throughout this study. Specifically, two types of materials (basalt and glass reinforced polymers) and two common rebar sizes (8 mm (#2) and 16 mm (#5) diameters) were tested. To quantify the freeze-thaw-durability, tensile tests according to ASTM D7205, transverse shear strength tests in line with ASTM D7617, and horizontal shear strength tests as specified in ASTM D4475 were conducted on numerous virgin fiber rebars and on fiber rebars that were subjected to 80 and 160 freeze-thaw cycles. While the results from the virgin materials served as benchmark values, the measurements and analysis from the aged (by freeze-thaw cycles) materials were used to quantify and determine the strength retention capacity of these bars. The results showed that a higher number of freeze-thaw cycles lead to lower strength retention for some rebar types. In addition, it was seen that rebar products respond differently to the aging process; while some material properties notably deteriorated, other material properties were insignificantly affected.

DOI:

10.14359/51740656


12345...>>

Results Per Page