ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 394 Abstracts search results

Document: 

21-220

Date: 

May 14, 2024

Author(s):

Brian Giltner, Seamus Freyne, Anthony Lamanna

Publication:

Materials Journal

Abstract:

The focus of the study is to determine the optimum length of micro (average diameter less than 0.3 mm) and macro (average diameter greater than or equal to 0.3 mm) hemp fibers subjected to tensile loading in a cement paste mixture. Optimizing the length of the fibers to carry tensile loading for concrete members is important to minimize the waste of hemp material and to provide the best performance. This study evaluated three water/cement (w/c) ratios; 0.66, 0.49, 0.42 (f’c= 17.2, 24.1, 27.6 MPa respectively – f’c = 2500, 3500, 4000 psi respectively). Because of the high cost of cement, the replacement of cement with fly ash was also part of the program to determine if the addition of fly ash would have a negative impact on the performance of the hemp fibers. The results show that micro and macro hemp fibers bonded to the cement matrix and carry higher tensile loads at higher w/c ratios. Statistical analysis (regression modeling) shows that the optimum length for macro hemp fibers is 30 mm (1.18 in.) and 20 mm (0.79 in.) for micro-fibers.

DOI:

10.14359/51740822


Document: 

23-072

Date: 

May 1, 2024

Author(s):

Jialiang Kou , Shun Yang, DongDong Zheng

Publication:

Materials Journal

Abstract:

To study the damage characteristics and failure mechanism of reinforced concrete damaged beams under cyclic load, the load-strain curve and stiffness degradation curve of reinforced concrete (RC) beams strengthened by adding stirrup, longitudinal reinforcement, and high ductile concrete (HDC) under repeated load were compared, as well as the flexural ability before and after strengthened. The results show that: compared with the original beam, the strengthened method with longitudinal strengthened at the bottom of the beam has the most obvious improvement in the flexural capacity of the beam. When the longitudinal strengthened is added, the flexural capacity can be increased by 86.25%. According to the actual failure mode of the reinforced beam, the stress reduction coefficient and height reduction coefficient are theoretically derived, and the bending capacity of the reinforced beam under each strengthened method is calculated. The theoretical value is in good agreement with the test value.

DOI:

10.14359/51740775


Document: 

22-290

Date: 

May 1, 2024

Author(s):

Ahmed T. Omar, Basem H. AbdelAleem, Assem A. A. Hassan

Publication:

Materials Journal

Abstract:

This paper investigates the structural performance of lightweight self-consolidating concrete (LWSCC) and lightweight vibrated concrete (LWVC) beam-column joints reinforced with mono-filament polyvinyl alcohol (PVA) fibers under quasi-static reversed cyclic loading. A total of eight exterior beam-column joints with different lightweight aggregate types (coarse and fine expanded slate aggregates), different PVA fiber lengths (8-12 mm [0.315-0.472 in.]), and different percentages of fiber (0.3% and 1%) were cast and tested. The structural performance of the tested joints was assessed in terms of failure mode, hysteretic response, stiffness degradation, ductility, brittleness index, and energy dissipation capacity. The results revealed that LWSCC specimens made with expanded slate fine aggregates (LF) appeared to have better structural performance under reversed cyclic load compared to specimens containing expanded slate coarse aggregates (LC). Shortening the length of PVA fibers enhanced the structural performance of LWSCC beam-column joints (BCJs) in terms of initial stiffness, load-carrying capacity, ductility, cracking activity, and energy dissipation capacity compared to longer fibers. The results also indicated that using an optimized LWVC mixture with 1% PVA8 fibers and a high LC/LF aggregate ratio helped to develop joints with significantly enhanced load-carrying capacity, ductility, and energy dissipation while maintaining reduced self-weight of 28% lower than normal-weight concrete.

DOI:

10.14359/51740773


Document: 

22-418

Date: 

April 1, 2024

Author(s):

Hao Qian, Gaozhan Zhang, Jun Yang, Qingjun Ding, Chundong Geng, and Sudong Hua

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

As one of the key factors influencing the hydration process, as well as the microstructure formation and evolution of ultra-highperformance concrete (UHPC), the action mechanism of different curing regimes have been studied to some extent. However, the current knowledge of the underlying mechanisms that control the different effects of different curing regimes is limited. In this study, the composition of hydration products, micromorphology, and migration and evolution of aluminum-phase hydration products of UHPC under three combined curing regimes (standard curing, steam curing + standard curing, and autoclave curing + standard curing) were investigated in depth. Micromorphology observation shows that heat treatment promoted the formation of higher-stiffness hydration products (tobermorite and xonotlite) in UHPC, and the higher the polymerization degree, the higher the Si/Ca ratio of the hydration product. Meanwhile, 29Si and 27Al nuclear magnetic resonance (NMR) spectroscopy shows that specimens with higher strength had higher Al[4]/Si and a lower amount of ettringite and AFm at the early curing stage. The elevated curing temperature reduced the formation of ettringite and AFm and allowed more Al3+ to replace Si4+ into the structure and interlayer of the calcium- (alumino)silicate-hydrate (C-(A)-S-H) gel, which increased the mean chain length (MCL) and polymerization degree of the C-(A)-S-H gel. However, the polymerization effect of Al ions is limited, so the provision of the silicon source to improve the Si/Ca ratio of the system is important.

DOI:

10.14359/51740372


Document: 

21-335

Date: 

April 1, 2024

Author(s):

Zainab Hashim Abbas Alsalami and Fatima Hashim Abbas

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

Ultra-high-performance concrete (UHPC) is considered a sophisticated concrete construction solution for infrastructure and other structures because of its premium mechanical traits and superior durability. Fibers have a special effect on the properties of UHPC, especially as this type of concrete suffers from high autogenous shrinkage due to its high cementitious content, so the properties and volume fraction of fibers are more important in UHPC. This study will describe previous related works on the mechanical behavior of UHPC specimens reinforced with micro- and nanoscale fibers, and compare of the behavior of UHPC reinforced with microfibers to that reinforced with nanofibers. The compressive strength, flexural behavior, and durability aspects of UHPC reinforced with nanoand/or microscale variable types of fibers were studied to highlight the issues and make a new direction for other authors.

DOI:

10.14359/51740369


12345...>>

Results Per Page