

Experimental Investigation on the Effect of Colloidal

Nanosilica on Concrete Carbonation

Advisor: Prof. Na (Luna)Lu

RA: Cihang Huang

Lyles School of Civil Engineering

PURDUE UNIVERSITY

- Background and motivation
- Literature review and research objective
- Experimental result
- Conclusion

Background

- Cement industry is responsible for about 8% of carbon dioxide emissions
- Carbon dioxide emissions from cement production increased by 23.4 percent from 1990 through 2021.

https://www.epa.gov/system/files/documents/2023-02/US-GHG-Inventory-2023-Main-Text.pdf

Background

Carbonation process

- 1. $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$
- 2. $(CaO)_x(SiO_2)(H_2O) + xCO_2 \rightarrow xCaCO_3 + SiO_2(H_2O)t + (z-t)H_2O$
- 3. Others: AFt, AFm, C_3S , C_2S ...

https://www.linkedin.com/pulse/concrete-faq-carbonation-tom-kline

Chang, Cheng-Feng, and Jing-Wen Chen. "The experimental investigation of concrete carbonation depth." *Cement and Concrete research* 36.9 (2006): 1760-1767.

huan1345@purdue.edu

- CNS will gel immediately and form flocculation, <u>generating a three-dimensional</u> <u>network</u>, under an alkaline environment such as cement pore solution.
- The network could <u>slow down the diffusion</u> of the water and ions within the concrete system.

Wen L, Xu J, Yang Q, et al. Chemical Engineering Science, 2020, 216: 115538.

Rubin B. AIChE Journal, 1969, 15(2): 206-208.

huan1345@purdue.edu

Previous research: Nanosilica & Carbonation

Year	Carbonation resistance	Nanosilica type	Ref
2023	Increase	Powder	Zhang, et al. "Carbonation Resistance of Marine Concrete Containing Nano-SiO2 under the Action of Bending Load." Journal of Marine Science and Engineering 11.3 (2023): 637.
2021	Increase	Powder	Li, Leo Gu, et al. "Synergistic cementing efficiencies of nano-silica and micro-silica in carbonation resistance and sorptivity of concrete." Journal of Building Engineering 33 (2021): 101862.
2019	Increase	Powder	Singh, L. P., et al. "Durability studies of nano-engineered fly ash concrete." Construction and Building Materials 194 (2019): 205-215.
2017	Increase	Powder	Li, L. G., et al. "Combined effects of micro-silica and nano-silica on durability of mortar." Construction and Building Materials 157 (2017): 337-347.
2016	Decrease *	Suspension	Torabian Isfahani, Forood, et al. "Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios." Advances in Materials Science and Engineering 2016 (2016).
2015	Decrease *	Colloidal nanosilica	Rao, S., P. Silva, and Jorge De Brito. "Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2)." Construction and Building Materials 96 (2015): 508-517.
2015	Increase	Powder	Lim, Seungmin, and Paramita Mondal. "Effects of incorporating nanosilica on carbonation of cement paste." Journal of Materials Science 50 (2015): 3531-3540.

Limited research has been done for the carbonation of concrete with CNS

□ Based on the mechanism of carbonation, series of experiment are designed to evaluate the influence of CNS on the carbonation of concrete materials.

Study of Interface with CNS

PURDUE UNIVERSITY

Mortar- w/c = 0.47

huan1345@purdue.edu

Spring 2023 | Slide [8]

Influence of CNS on Interface

<u>Ref</u>

- A wide interface can be observed in the reference sample.
- The interface was unable to find in the 0.3%CNS sample.

Influence of CNS on Interface

<u>Ref</u>

0.3%

• The improvement is due to pore refinement and improved particle packing.

CONVENTION

Influence of CNS on Internal Humidity

- CNS slowed down the water evaporation rate due to a high water retention capacity;
- Sol-gel effect of CNS \rightarrow Floc network \rightarrow Higher internal humidity

□ Based on the mechanism of carbonation, series of experiment are designed to evaluate the influence of CNS on the carbonation of concrete materials.

Hydration and Self-healing

Huang C, Su Y F, Baah P, et al. Construction and Building Materials, 2022, 348: 128687.

huan1345@purdue.edu

Hydration and Self-healing

In addition...

Tensile strength retention ratio

The self-healing was not only based on observation, but also reflected on the mechanical performance

Huang C, Su Y F, Baah P, et al. Construction and Building Materials, 2022, 348: 128687.

huan1345@purdue.edu

Compressive strength and strength to density ratio

• A higher mechanical strength can be observed as the content of CNS increased;

• Strength to density ratio is also found to be increased.

□ Based on the mechanism of carbonation, series of experiment are designed to evaluate the influence of CNS on the carbonation of concrete materials.

MIP and Rapid Air

MIP and image analysis (Rapid air analysis) indicate an increase in the porosity and a decrease in the large voids.

Change in Pore Structure

□ The micro-CT images suggest an increase in the overall porosity, while a decrease in the volume of large pores can also be found.

□ Based on the mechanism of carbonation, series of experiment are designed to evaluate the influence of CNS on the carbonation of concrete materials.

Pure cement paste

- w/c = 0.45;
- CNS dosages of 0.3;
- Curing condition: limewater cure for 28 days and 7 days cure in 50% RH chamber;
- Ground to powder and proceed to carbonation;
- The evaluation of the powder samples only chemically considers the effect of CNS on carbonation intensity.

100% CO₂ with a pressure of 50 psi for 24 hours

Ca(OH)₂ & CaCO₃

 After carbonation, Ca(OH)₂ content was reduced while the content of CaCO₃ was significantly increased.

CaCO₃ content

- Reference: 11.7 wt% \rightarrow 39.2 wt% (12.1% increase)
- 0.3% CNS: 12.3 wt% → 43.4 wt% (<u>13.7% increase</u>)

Ca(OH)₂ content

- Reference: 17.6 wt% \rightarrow 15.3 wt% (<u>12.8% reduction</u>)
- 0.3% CNS: 18.2 wt% → 16.6 wt% (<u>8.9% reduction</u>)
- A higher CaCO₃ increase ratio can be found in the sample with CNS, while its Ca(OH)₂ reduction is lower than the reference sample;
 - Carbonation of CH + CSH gel

- CNS particles have hydroxylated surfaces (-OH) and achieve stability by possessing a net negative charge on the surface.
- A positively charged ion (such as Ca²⁺) can neutralize a site on the silica surface.

UNIVERSITY

Zhao M, Liu G, Zhang C, et al. State-of-the-art of colloidal silica-based soil liquefaction mitigation: An emerging technique for ground improvement[J]. Applied Sciences, 2019, 10(1): 15.

CNS in Carbonation

Colloidal nano silica has strong negative charge on the surface, which could
potentially react with the Ca²⁺ in C-S-H gel and the extraction of Ca²⁺ increase
the possibility of carbonation process.

Structural Features of C–S–H(I) and Its Carbonation in Air—A RamanSpectroscopic Study. Part II: Carbonated Phase

Carbonation of Paste Powder

pH value

- Reference: $12.56 \rightarrow 9.73$ (**22.5% decrease**)
- 0.3% CNS: 12.59 → 8.67 (<u>31.1% decrease</u>)

- Due to a higher level of carbonation, sample with CNS exhibits more pH reduction after carbonation process.
 - Further research is needed for the evaluation of the influence of CNS dosages and pore structure.

A higher degree of hydration and better quality of the cement matrix can be found in the sample with CNS

- improved hydration and particle packing;

The incorporation of CNS has the potential to increase the carbonation level of concrete materials and contribute to the carbon neutralization

- negative charge on the surface of CNS;

higher porosity achieved by CNS;

□ Research about CNS & carbonation is limited, more studies are needed...

Acknowledgements

Faculty Advisor:Lab Colleagues:Image: Colleague colleagueImage: Colleague colleagueForf. Na (Luna)LuFui HeGingchen Yu

Thank you!

huan1345@purdue.edu