A Durability-based Performance Evaluation Approach for the Effective Use of Uncommon Coal Ashes in Concrete

Anol K Mukhopadhyay, Ph.D., P.G.

Senior Research Scientist (Texas A&M Transportation Institute) & Adjunct Professor (Civil Eng., Texas A&M Univ)

Pravin Saraswatula, Ph.D., EIT

Postdoctoral Research Associate (Texas A&M Transportation Institute)

Our Approach to Durability-Based Performance Evaluation of SCMs in HPC Bridge Deck Mixes

- Rapid & comprehensive durability-based performance evaluation of cast-in-place High-Performance
 Concrete (HPC) bridge deck mixes during the mix design and trial batch stages.
- > Covers four major durability aspects:
 - 1. Alkali Silica Reaction (ASR) Mitigation: Chemical Screening Tool (CST) to predict SCM dosage for ASR mitigation
 - 2. Shrinkage: Estimation of Autogenous & Drying Shrinkage strains & predicts cracking potential based on RILEM B4 Model (RILEM TC 242)
 - **3.** Chloride Durability: resistance to chloride ion ingress:
 - 1. Estimation of Anticipated Time to Rebar Corrosion.
 - 2. Determination of Probability of Failure Based on Target Reliability Levels using the SHRP2-probabilistic model
 - 4. Freeze-Thaw (F/T) Durability: F/T performance prediction in terms of estimating "Time to Critical Saturation"

A simplified, user-friendly Excel-based spreadsheet was developed for DOT practitioners and contractors

Durability Evaluation (Part 1)- ASR Mitigation: Chemical Screening Tool (CST)

Publication

Saraswatula, P., A. Mukhopadhyay, and K.-W. Liu. Development of a Screening Tool for Rapid Fly Ash Evaluation for Mitigating Alkali Silica Reaction in Concrete. *Transportation Research Record: Journal of the Transportation Research Board*, 2022

Durability Evaluation (Part 1) - ASR Mitigation: Application of CST

- > **Step 1**: Use Chemical Screening Tool (CST) to predict for optimum Fly Ash (FA) dosage for ASR mitigation
 - ASTM C 114 mod. test to measure water soluble alkali (WSA) from FA (\sim 1-2 hrs./test) \rightarrow 1 day
 - Using Non-Linear Regression model to predict WSA from FA \rightarrow *Instantly*
- > Step 2: Determine FA dosage by ASTM C 1567 (% Fly Ash \leq 0.10% Threshold Expansion) \rightarrow 14 Days
- > Step 3: Comparative assessment between CST vs ASTM C1567 FA Dosage
 - If difference is more than 5% (e.g., 6-10%) → ACCT (AASHTO TP 142) validation is mandatory
 - If difference is less than 5% (e.g., between 2-5%) → use CST-based replacement level → ACCT(AASHTO TP 142) validation can be considered optional

Accelerated Concrete Cylinder Test (ACCT) [AAASHTO TP142] ASR Test Method Developed at TTI

• Mukhopadhyay AK, Liu Kai-Wei and Jalal M.," An innovative approach of fly ash characterization and evaluation to prevent ASR, ACI Materials Journal, 2019, Vol. 116, Issue 4, 173-181.

 Liu, Kai-Wei and Mukhopadhyay, A. K., "Accelerated Concrete-Cylinder Test for Alkali–Silica Reaction," Journal of Testing and Evaluation (IF: 0.644) ASTM International, Vol. 44, No. 3, 2015, pp. 1–10.

CENTER FOR

Renewal

Infrastructure

ASR Mitigation: Application of the Performance-Based Approach for the Conventional Ashes

Estimation of fly ash (23 Fly Ashes - 19 Class F & 4 Class C) dosages using

- Chemical Screening Tool (CST)
- AASHTO TP 142 (ACCT) and ASTM C 1567 (AMBT)

Classification Group	Group Description	No. of Fly Ashes	Fly Ash Types				
G1	CST = ACCT = ASTM C 1567	15/ 23 ≈ 65%	13 – Class F 1 – Class C				
G2	CST = ACCT; but ASTM C 1567 underestimates	8 / 23 ≈ 35% (4/8 ~ 5% lower; 4/8 ~ 7-10% lower)	6 – Class F 2 – Class C				
 21 fly ashes (Class C and F) with C1293 data (literatures) – good correlation between CST and C1293 							

Publication

Saraswatula, P., A. Mukhopadhyay, and K.-W. Liu. Development of a Screening Tool for Rapid Fly Ash Evaluation for Mitigating Alkali-Silica Reaction in Concrete. *Transportation Research Record: Journal of the Transportation Research Board*, 2022

Durability Evaluation (Part 2) - Shrinkage

Validation Testing

- Autogenous Shrinkage (AS) Evaluation → sealed concrete prisms, mod. ASTM C 1698 (only for selective "High AS" warning mixes)
- 2. Drying Shrinkage Evaluation (7-28 days) →ASTM C 157
- 3. Cracking Potential Estimation
 - Based on measured tensile strength, MOE and 28-days AS and DS, and estimated creep (in-built model).

- 1. If 28-day AS/DS> 30%: "High AS" warning
- 2. If 28-day DS \geq 400 μ S: "High DS" warning
- 3. If CP > 1.5: "High CP" warning

CP works: Fu et al., 2013 – Iowa State, Oregon DOT, 2015

Concrete Resistivity Testing

Aspect 1: Guidance on Curing Protocol and conditioning procedure for Resistivity Testing

- > TTI Model-2 (a combined effect of soluble alkali contribution from both cement & SCMS and alkali binding):
 - 1. Soluble Alkali contribution:
 - Cement & Silica Fume → 75% of Bulk Alkali (NIST Model)
 - − Fly Ashes → Measured Available Alkali (AA) [ASTM C 311]
 - Estimation of AA: Regression equations based on Machine Learning Model using bulk chemical composition (oxide wt%) as inputs (inbuilt into the Tool).
 - 2. Alkali Binding:
 - Assignment of binding factors depending on Ca/Si of predicted C-S-H from cement, FA & SF based on established literature studies (Hong and Glasser, 1999; Kulik 2011; Lothenbach et.al., 2019)
 - Model parameters refined/validated based on GEMS thermodynamic modeling & 150 literature extraction measurements.

Concrete Resistivity Testing (contd.)

Increasing the Reliability of Formation Factor Based Transport **Property Prediction for High Performance Concrete (HPC) Mixtures** Through Innovative Matching Pore Solution (MPS) Curing

(Accepted for Publication, TRR 2023)

Curing Guidelines based on TTI Model-2 (developed under 0-6958 TxDOT Project)

Note:

AC1 \rightarrow Acc. Conditioning-Type 1 [ASTM C 1202] \rightarrow 7 days @ 23°C and 21 days @ 40°C AC2 \rightarrow Acc. Conditioning-Type 2 [AASHTO TP 119] \rightarrow 3 days @ 23°C and 25 days @ 50°C

> Chloride Durability

- Primary Input:
 - 1. 28-day Resistivity Value (MPS/SPS & AC2)
 - − Resistivity \rightarrow AFF \rightarrow Diffusion Coefficients
 - inbuilt chloride binding prediction model based on mix design information (i.e., alumina content of binder, Azeez et al, 2020)
- Exposure & Construction Inputs:
 - 1. Chloride Loading: Surface chloride concentration (Cs) (based on ConcreteWorks)
 - 2. Construction Inputs: Concrete Cover, Rebar Type & CNI Dosage (Used to estimate Chloride Threshold (Ct), ConcreteWorks)
 - Location & Month of Construction: Monthly ambient (mean) temperatures in-built for 18 regions in Texas and for Jan – Dec (NOAA database)
 - 4. Design Service Life & Target Reliability Index: Based on SHRP2 guidelines
- > F/T Durability
 - Primary Input: 28-day Resistivity Value (MPS/SPS & AC2)
 - > Resistivity \rightarrow AFF \rightarrow Secondary Sorptivity (Todak et al., 2017)
 - Saturation Input: Critical Degree of Saturation (DOS_{cr})

Sample Report (29%C+6%SF mix) – TxDOT Tool

	INPUTS		OUTPUTS
	Curing Type	MPS	Permeability Classification (Value & Class)
Resistivity &	Conditioning Regimen	AC2	Resistivity (Mea), k.Ohm-cm 45 Very Low
Fornation	Age of Resistivity Test (days)	28	Resistivity (Sat), kOhm-cm 28 Very Low
Factor	Measured (avg.) Resistivity	45	Apparent Formation Factor 4476 Very Low
	(Kohm.cm)	45	Saturated Formation Factor 2740 Very Low
	Max Surface Cl Conc (Cs)	0.60%	Apparent Diff Coff (Da, m ² /s)(Pred based on FF) 4.5E-12
	Rebar depth (Cover, in)	2.50	Chloride Binding Factor (Pred) 1.67
Chloride	Rebar Type Epoxy Co.		Effective Diff Coff (De,m ² /s)(Pred based on FF) 1.7E-12
Exposure & Rehar	Corrosion Inhibitor (gal/CY)	2.00	Estimated Time to Corr Repair, yrs >75 years
Corrosion	Location (In Texas)	Amarillo	Probability of Failure (SHRP2 Model) 5%
	Month of Construction	July	Reliability Index Calculated 1.685
	Target Realibility Index	1.3	Pass or Fail? (Reliability -Calc vs Target) Passes
F/T Service Life	Critical Degree of Saturation (DOScr %):	86%	Est. Time to Critical Saturation (TTRCS) yrs 42

Durability Evaluation (Part 3 & 4)- Chloride & F/T Durability

- **Evaluating Chloride Durability** >
 - Approach 1: Est. Time to Rebar Corrosion
 - Deterministic Approach based on Fick's 2nd law >
 - **Approach 2: Probability of Failure Based on Target** — **Reliability Levels**
 - > Fully Probabilistic Approach (SHRP 2 Service Life Design for Bridges :R19-A)

SHRP2 Model Modified Based On TxDOT Tool Approach

Chloride Ingress – Fick's 2ND Law of Diffusion for Corrosion Initiation

■ Red → Chloride & Environmental Loading

- $C_0 \& C_s \rightarrow$ Background & surface Chloride Concentration
- $T_{real} \rightarrow$ Ambient Mean Temperatures from Project Site
- Green → Material Resistance
 - $a \rightarrow$ concrete cover
 - $D_{eff} \rightarrow$ Effective Diffusion Coff (based on AFF & w/ inclusion of chloride Binding)
 - $\alpha \rightarrow$ aging exponent (function of Δ FF vs time)

Input Resistivity \rightarrow Apparent Formation Factor (F_{APP}) \rightarrow Sorptivity Coff (S'_2) (Validated from ASTM C 1585 Sorptivity Experiments)

TxDOT Tool: Overall

Case Study 1: Bridge Deck concrete with 25% F Ash - Galveston, TX

TxDOT Tool Predictions vs. Laboratory Measurements

#Mix	#Туре	SHR	INKAGE	RESI	STIVITY & FOI	RMATION FAC	CTOR	CHLORIDE DURABILITY			F/T DURABILITY		
		Autogenous/ Drying Shr (AS/DS)	Cracking Potential (CP)	Measured Resistivity (p _{mea})	Saturated Resistivity (p _{sat})	Apparent Formation Factor (AFF)	Saturated Formation Factor (FF)	Chloride Binding Factor (Cb)	Effective Diffusion Coff (De)	Est. Time to Rebar Corrosion (t_{corr})	Prob of Failure & Reliability (P_f)	Pass or Fail	Time to critical saturation (t_{sl})
25% F Ash	Tool Predicted	17%	Low (0.99)	28.2 (L)	17 (L)	2039 (L)	1213 (L)	1.69	3.7E-12	>75 years	17% (0.94)	Fail	19
HPC Mix	Lab Measured	20%	Low (0.87)	28.2 (L)	19 (L)	1974 (L)	1329 (L)	1.71	2.9E-12				27
20% F ash	Tool Predicted	31%	Moderate(1.11)	42.7 (L)	26 (VL)	2852 (L)	2048 (VL)	1.6	2.8E-12	> 75 years	2% (2.14)	Pass	26
+ 5% SF HPC Mix	Lab Measured	32%	Moderate(1.20)	42.7 (L)	30.8 (VL)	2989 (L)	2157 (VL)	1.63	1.6E-12				30

*Note: Chloride Durability Eval -> surface chloride conc (Cs) - 0.6% (<1 mi from the ocean); Reported use of Black Steel & 2 Gal/yd3 CNI; July (high ambient temp)

25% F ash Mix (Observations)

ASR Evaluation: CST predicted 25% F ash is adequate to mitigate ASR; the difference between CST & C1567 is <5%, no need for ACCT validation

20% F ash + 5% SF Mix (Observations)

- **ASR Evaluation:** Ternary blend is very effective to mitigate ASR, no need for ACCT validation
- Shrinkage -> As CP increases due to the addition of 5% SF, selecting the right placement time and good curing practice is highly recommended

Case Study 1 : Bridge Deck concrete with 25% F Ash - Galveston, TX

TxDOT Tool Predictions vs. Field Observations

LAB STUDY USING HPC BRIDGE DECK MIXES						
Shrinkage	Transport Properties @ early ages (within 28 days)	Durability Performance				
Autogenous Shrinkage - Iow Drying Shrinkage– Iow (320-350) Cracking potential - Iow	Poor - slower microstructure development – no or negligible reduction in permeability	Poor at early ages but improvement at later ages				

Galveston aggressive exposure conditions:

- Surface chloride conc (Cs) - 0.6% (<1 mi from the ocean)
- Use of Black Steel and 2 Gal/yd3 CNI

Case Study 2: Bridge Deck Concrete with 29% C Ash+ 6% SF - Amarillo, TX

TxDOT Tool Predictions vs. Laboratory Measurements

#MIX	#TYPE	SHRINKAGE		RESISTIVITY & FORMATION FACTOR		CHLORIDE DURABILITY*				F/T DURABILITY			
		Autogenous/ Drying Shr (AS/DS)	Cracking Potential (CP)	Measured Resistivity (p _{mea})	Saturated Resistivity (p _{sat})	Apparent Formation Factor (AFF)	Saturated Formation Factor (FF)	Chloride Binding Factor (Cb)	Effective Diffusion Coff (De)	Est. Time to Rebar Corrosion (t _{corr})	Prob of Failure & Reliability (P_f)	Pass or Fail	Time to critical saturation (t₅ı)
29% C ash	Tool Predicted	35%	Moderate-High (1.32)	30 (L)	20 (L)	3068 (L)	2058 (VL)	1.72	2.50E-12	>75 years	8% (1.42)	Pass	47
+ 0% SF HPC Mix	Lab Measured	34%	Moderate-High (1.40)	30 (L)	19.9 (L)	3186 (L)	2146 (VL)	1.64	2.00E-12				48

*Note: Chloride Durability Evaluation -> Bridge Deck in Amarillo, TX; surface chloride conc (Cs)- 0.6%; Reported use of Epoxy coated steel w/ 2 Gal/yd3 CNI ; July (high ambient temp)

Observations for 29% C ash + 6% SF Mix :

- 1. ASR Evaluation: Adequate to mitigate ASR, the difference between CST & C1567 is <5%, no need for ACCT validation
- 2. Mix Satisfies ASR, Chloride & F/T durability;
- 3. Shrinkage \rightarrow predicted CP is moderate-high due to the addition of 6% SF & low w/cm ratio (0.40) selecting the right placement time (i.e., evening or

nighttime) and good curing practice is very important to eliminate early-age cracking potential

Case Study 2: Bridge Deck Concrete with 29% C Ash+ 6% SF - Amarillo, TX

TxDOT Tool Predictions vs. Field Observations

ASTM C 618 /C311 (Completed)	Advanced Characterizations (completed)	Reactivity (completed)	Effect on Air Entrainment (completed)	Soluble Alkali Evaluation (completed)	Selective Fresh and Hardened Properties (in progress)	Durability-Based Performance Evaluation <i>(in progress)</i>
 Bulk Oxide Composition (XRF) Moisture Content Fineness, Soundness & Density Loss of Ignition (LOI) 	 Laser Particle Size Distribution Phase identification and quantification (QXRD) 	• R3 Test (ASTM C 1897)	• Unburnt Carbon on Air (<i>Foam</i> <i>Index Test)</i>	 Water Soluble Alkali (modified ASTM C 114 test) Available Alkali Test (ASTM C 311) 	 Workability & Water Demand Strength properties (compressive, flexural, etc.) 	 Alkali Silica Reaction (ASR) Shrinkage Autogenous, Drying & Cracking Potential Formation Factor-based Transport Properties Chloride Durability time to rebar corrosion probability of failure) Freeze Thaw (F/T) Durability

Evaluation of Unconventional Coal Fly Ashes (Blended & Reclaimed Ashes)

Bulk Oxide Composition – XRF (%)

#	BL1	BL2	R1
Туре	Blended Ash-1 blend of 50% Class C ash and 50% pumice	Blended Ash-2 80% Powder River Basin (PRB) coal and 20% lignite coal	Reclaimed
Class (C618)	F	С	F
SiO2	75.1	48.2	49.1
CaO	9.1	18.3	2.8
AI2O3	18	20.7	25.4
Fe2o3	3.2	5	12.5
MgO	2.1	4	1
SO3	3.4	0.8	0.1
Na2O	3	1.1	0.2
К2О	3.2	1	2.4
Na2Oeq	5.11	1.76	1.78

Quantitative X-Ray Diffraction – QXRD (%)

	BL1	BL2	R1
Amorphous	74.8	48.6	71.9
Calcite		1.3	
Ca-SO4	4.3	3.2	
Fe-Phases			3.6
Merwinite	3.1	10.9	
Periclase		2.5	
Mullite	1.8	5.3	17.4
Quartz	6.8	18.8	7
Arcanite (K ₂ SO ₄)	0.8	2.7	
Na-Feldspar	7		
K-Feldspar	3.3		

Na– Feldspar Phases: (Primary) •<u>albite</u> → NaAlSi₃O₈ •<u>andesine</u> → NaAlSi₃O– CaAl₂Si₂ K− Feldspar Phases: (Primary) •orthoclase (monoclinic) → KAlSi₃O₈ •microcline (triclinic) → KAlSi₃O₈

Evaluation of Unconventional Coal Fly Ashes (Bottom Ashes)

Bulk Oxide Composition – XRF (%)

#	B1	B2
Туре	Bottom Ash	Bottom Ash
Class (C618)	F	F
SiO2	41	56.8
CaO	0.6	9.6
AI2O3	20.2	16.8
Fe2o3	11	13.1
MgO	1.5	1
SO3	0.2	0.4
Na2O	1.4	0.9
К2О	0.1	1.4
Na2Oeq	1.4	1.8

Quantitative X-Ray Diffraction – QXRD (%)

	B1	B2
Amorphous	69.4	60.3
Fe-Phases	2.7	12.3
Mullite	16	2.3
Quartz	10	6.2
Arcanite (K ₂ SO ₄)	-	1.4
Ca-Feldspar		16.1

<u>Ca− Feldspar Phases: (Primary)</u> •<u>anorthite</u> → CaAl₂Si₂O₈

Results from Characterization Tests (C 618, contd.)

#	$SiO_2 + AI_2O_3 + Fe_2O_3$ (C 618 limit \geq 70%)	SO₃(%) (C 618 limit ≤ 4%)	Fineness % Retained on #325 (45 micron) Sieve (C 618 limit ≤ 34%)	Laser Particle Size Distribution (d50, micron)	Moisture Content (MC, %) (C 618 limit ≤ 3%)	Loss on Ignition (LOI, %) (C 618 limit ≤ 6%)	Foam Index Test (AEA ml/100 kg cem) (5% vol AEA @ 33% cem replacement) [control Class F paste → Foam Index = 5]
BL1 (as received)	96.3	3.4	13%	11.2	1.1%	2.1%	6
BL2 (as received)	73.9	0.8	27%	12.5	1.2%	3.2%	7
R1 (as received)	87	0.1	14%	19.6	1.7%	3.3%	10
B1 (after grinding)	72.2	0.2	74% (as received) 21% (after grinding)	92.9 (as received) 19.71 (after grinding)	0.8%	12.6%	17
B2 (after grinding)	86.7	0.4	14%	Chunks (as received) 4.83 (after grinding)	0.18%	10.3%	15

• R1 (Reclaimed Fly Ash)

- Low LOI but requires higher AEA dosage to stabilize foam (vs. control). Limitation \rightarrow LOI test does not distinguish between unburnt & activated carbon
- May require appropriate remediation techniques to remove activated carbon.
- Bottom Ashes
 - Grinding is needed to meet C 618 fineness criteria
 - LOI higher than the prescribed 6% limit Foam index test results agree with high LOI results.

R3 Reactivity Tests for Unconventional Ashes

ASTM C 1897 R3 Reactivity Test & Classification based on Isothermal Calorimetry (0-7 days) & CH Consumption (7th day, TGA Test)

#	7d-Heat Release (J/g SCM)	7d-CH consumed (g/100g SCM)
BL1	197	74
BL2	254	37
R1	214	72
B1	152	54
B2	135	57

Classification based on Reactivity		7d-Heat Release (J/g SCM)	7D-CH consumed (g/100g SCM)	SCMs Evaluated in Current Work	#TTI's Database of other SCMs
Inert	Non- Reactive	<120			Quartz
	Less Reactive	120-370	<50	BL2	Class C Fly Ash
пуйгайнс	More Reactive	>370			
Pozzolanic	Less Reactive	120-370	50-100	BL1, R1 B1, B2	Class F Fly Ashes Natural Pozzolans (volcanic origin e.g., pumice, etc)
	More Reactive	>370	>100		Silica Fume, Metakaolin Calcined Clays

Preliminary Limits – Based on Limited Testing (TTI) & Literature – [Kalina et al., (2019), Suraneni et al., (2019)] Further Evaluation in progress

Soluble Alkali, Chemical Screening Tool (CST) & ASR Test

	Total Bulk Alkali <i>(TA, XRF)</i>	Water Soluble Alkali (WSA, ASTM C 114 mod.)	Available Alkali (AA, ASTM C 311)	Chemical Screening Tool (CST) Prediction (for R2 Aggregate)	AASHTO TP 142 (ACCT) ASR Tests (for R2 Aggregate)
#	ΤΑ, Να ₂ Ο _{eq}	WSA, Na ₂ O _{eq} (%TA)	AA, Na ₂ O _{eq} (%TA)	Optimum SCM dosage % (PSA ≤ THA=0.34N)	Expansion @ % SCM (at 78 days) (threshold limit 0.04%)
BL1	5.11	0.29 (5.7%)	0.98 (22%)	45%	0.060% @35%
BL2	1.76	0.06 (3.6%)	1.1 (63%)	30%	0.027% @ 35%
R1	1.78	0.07 (4%)	0.49 (28%)	29%	0.014% @ 35%
B1	1.4	0.07 (5%)	0.84 (58%)	29%	
B2	1.8	0.13 (7.3%)	0.73 (40%)	35%	

Comparative Assessment Of Durability Evaluation For The Unconventional Ashes

	ASR EVALUATION (DOSAGE FOR ASR MITIGATION)		SHRINKAGE EVALUATION	RESISTIVITY TESTS (under progress)	CHLORIDE & F/T DURABILITY EVALUATION (PREDICTED) (Lab Validation after obtaining resistivity data)
	Prediction (CST)	ASR Test (ACCT)	Cracking Potential (CP)	<i>Curing & Conditioning Procedure</i> (based on PSC using TTI-Model 2)	Anticipated Predictions (Tool inputs to be revised based on resistivity data, followed by lab validation of predictions)
BL1	~ 45%	40%	Low CP	MPS, AC2@28 days	Ternary blend with SF will work better
BL2	30%	<35%	Low CP	SPS, AC2@28 days	Adequate chloride durability performance may not be satisfied - poor microstructure development (may be connected to poor reactivity based on R3 test)
R1	29%	<35%	Low CP	SPS, AC2@28 days	
B1	29%	NA	Low CP	SPS, AC2@28 days	Behave like Classical Class F Fly ash
B2	35%	NA	Low CP	SPS, AC2@28 days	

Texas Department of Transportation (TxDOT) American Coal Ash Association Educational Foundation (ACAAEF) United States Bureau of Reclamation Los Alamos National Laboratory Sample providers: Boral, Ozinga Cement

THANK YOU

ANY QUESTIONS ?

Anol K. Mukhopadhyay, Ph.D., P.G., (anol@tamu.edu)

Pravin Saraswatula, E.I.T. (spravin112@tamu.edu

Kai-Wei (Victor) Liu, Ph.D., (k-liu@tti.tamu.edu)

TTI Model-1: Pore Solution Alkalinity (PSA)

Major Findings & Results

- 1. Certain Class C FA and blended fly ashes contribute very high levels of soluble alkali at early ages
 - Significant modification of concrete PSA by FA
- 2. Nonlinear Regression Model to predict WSA
 - − Primary Variables → Na2O, K2O & SO3
 - R2=0.92, MAE = 6.7%
- 3. TTI Model-1 Performance
 - Good reliability in PSA Determination
 - 4.3% MAE, 6.2% RMSE with extraction measurements

ASTM C 1581 Single Ring Shrinkage Tests: Results & Cracking Potential Discussion

	(AST	Single Ring Test M C 1581/AASHT(t D T 334)	28 days Drying	Cracking Potential Based On Drying Shrinkage (DS)		
Mix #ID	Mix #ID Crack ? Peak Strain in Ring (μs) 28-days Potential		Shrinkage (µs)	Cracking Potential (Only DS, no creep)	Creep (CP) (B3 Model)	Cracking Potential (DS + Creep)	
CEM				400	Mod-High	1.22	Mod
6SF	No	162	Mod-Low	436	Mod-High	1.46	Mod
25F	No	135	Mod-Low	250	Low	0.86	Low
20F5SF	No	133	Low	280	Low	0.83	Low
35F			-	230	Low	0.66	Low
35C	No	109	Low	300	Low	0.84	Low
29C6SF	No	115	Low	350	Mod-Low	1.1	Mod
35C10SF			-	382	Mod-High	1.31	Mod

- > Single Ring Tests
 - No rings cracked at 28 days
 - Cracking Potential: Low to Moderate-Low
 - Peak Strain at 28 days: 162 microstrain (6SF)

- > Cracking Potential Based On Drying Shrinkage
 - C157 DS+ Creep → Good Predictor of Ring Test Performance
 - Considering creep is Important
 - > Almost Similar Classification to Ring Test Results

Evaluating Cracking Potential for HPC Mixes

Cracking Potential Based on Ring test – ASTM C 1581 Classification

Cracking Potential Based on Free Drying Shrinkage (ASTM C 157)

CPI – Only Free Drying Shrinkage And No Creep CP – Free Drying Shrinkage + Creep Fu et al., 2013 – Iowa State, Oregon DOT, 2015

Net Time to Cracking (days)	Average Stress Rate (psi/day)	Cracking Potential (σring/f't)	Potential for Cracking Classification	
$0 < t_r \leq 7$	S ≥ 50	>2.75	High	
$7 < t_r \le 14$	25 ≤ <i>S</i> < 50	0.45 0.75	Moderate-High	
$14 < t_r \le 28$	15 ≤ <i>S</i> < 25	2.15 - 2.75	Moderate-Low	
<i>t_r</i> > 28	<i>S</i> < 15	<2.15	Low	

Cracking Potential Indicator (CPI)	Cracking Potential (CP)	Potential for Cracking	
CPI ≥ 4.0	CP > 1.5	High	
3.0 ≤ CPI < 4.0	1 < CD < 1 5	Moderate-High	
2.5 ≤ CPI < 3.0	T < CP ≤ 1.5	Moderate-Low	
CPI < 2.5	CP ≤ 1	Low	

Drying Shrinkage (DS) & Autogenous Shrinkage (AS) Evaluation for HPC Mixes

CENTER FOR

Renewa

Infrastructure

SUMMARY OF DRYING SHRINKAGE PERFORMANCE								
	CEM	6SF	25F	2055SF	35F	35C	29C6SF	35C10SF
Cem Content (Ib/yd3)	580	520	584	584	584	520	541	541
Paste Volume %	26.3%	25.8%	26.1%	26.2%	26.3%	25.3%	25.6%	25.8%
28-day DS (μs)	400	<mark>436</mark>	250	<mark>280</mark>	230	300	<mark>350</mark>	<mark>382</mark>
Ring Test Crack?		No	No	No		No	No	
Cracking Potential	Mod	Mod	Low	Low	Low	Low	Mod	Mod
7-28 Days Strain Rate	17.39	18.11	10.60	12.23	10.06	11.73	14.44	15.57

- Current HPC Mix Practice in Texas appear to be optimized for drying shrinkage performance
 - Low Cementitious Contents (520-584 lbs./CY), Low W/cm ratio – 0.40-0.42
 - Paste Volume 25-26%, ~ 75% Aggregate Volume

	CEM	6SF	25F	20F5SF	35F	35C	29C6SF	35C10SF
AS – 7days , (μs)	89	102	55	70	50	65	69	80
AS – 28 days, (μs)	150	165	50	90	45	80	122	154
DS – 28 days, (µs)	<mark>400</mark>	<mark>436</mark>	250	<mark>280</mark>	230	300	<mark>350</mark>	<mark>382</mark>
% AS/DS - 28 days	38%	38%	20%	32%	20%	27%	35%	40%
AS Strain Rate (0-28 days)	5.11	6.88	2.21	3.79	1.54	3.07	4.98	5.74
DS Strain rate (7-28 days)	<mark>17.39</mark>	<mark>18.11</mark>	10.6 0	<mark>12.23</mark>	10.06	11.73	<mark>14.44</mark>	<mark>15.57</mark>

- Low w/cm ratio W/ HRWR + Silica Fume \rightarrow High AS
 - AS in C ash + SF mixes comparable with AS in control mix (CEM)
- Higher early age AS strain rate in the Ternary, 6SF and CEM mixes
- The higher the AS strain rate, the higher the DS strain rate

Models for Shrinkage Prediction

- Objective: A model to predict drying shrinkage & autogenous shrinkage based on w/cm ratio, binder composition & concrete mix proportions (incorporating the effect of paste volume). Primary considerations
 - Predicts Autogenous Shrinkage
 - Sensitive to Effect of Silica Fume Addition on Autogenous Shrinkage Strain Predictions
 - Incorporates SCM effect (type & replacement level) in Drying Shrinkage Strain Predictions

We explored available models from ACI-209 & RILEM TC 242

	Drying Shrinkage (DS)	Autogenous Shrinkage (AS)	RILEM B4 Model TC 242
ACI 209-R	Only CEM	×	DS & AS evaluated based on Section DS & DS evaluated based on DS evaluated based on DS evaluated based on DS evaluated based on
Bazant-Baweja B3	som effect incorporated as cement replacement	×	 W/cm ratio SCM type & replacement levels
RILEM B4 Model, 2015	✓ (flexible model parameters flexible to include SCM effect & modify)	✓	Minimal Additional inputs Specimen Dimensions Initial curing conditions – Temp & Duration

- 3. Ambient Exposure
- 4. Age for Evaluation

B4 Model & B4 Model (revised parameters) vs. Lab Data

- 1. Default B4- model parameters (blue bars)
 - not sensitive to Class C vs. Class F Fly ash differences.
 - Highly sensitive to SF & total cement replacement for ternary mixes
- 2. Model parameters (grey bars) were revised based on experimental data

Approaches to Determine Concrete Pore Solution

ACCURACY - RELIABILITY - COMPLEXITY

Parameter		NIST Model (Bentz et al., 2007)	NIST + ASTM C 311 (Mukhopadhyay et al., 2019)	TTI Model-2	GEMS Thermodynamic Modelling (Lothenbach., 2008)	
Overall Approach		Empirical	Empirical	Mix of Empirical & Kinetic Modelling	Thermodynamic model	
Soluble Alkali	Cement & Silica Fume		75% of Bulk Alkali 75% of Bulk Alkali		Alkali dissolution based on	
trom Ingredients	Fly Ash (FA)	75% OF BUIK AIKAII	Available Alkali (AA,ASTM C 311)	Machine Learning Model for direct AA prediction (Input XRF)	(measured \rightarrow QXRD/TGA/SEM)	
Alkali Binding		✓ Silica Fume★ Fly ashes & Cement	 ✓ Silica Fume ✓ Silica Fume, Fly Ash & Ce ✓ Fly ashes & Cement ✓ CSH predictions & distribution re 		✓ Silica Fume, Fly Ash & Cem In Built CSHQ model	
Ease of Use & Reliability		 Rapid approach High error & Low reliability for FA mixes 	 Rapid approach & Improved accounting for FA soluble alkali Does not Consider of alkali binding from FA ASTM C 311 test discontinued 	 Rapid Estimating Tool & Easy to Implement Higher Reliability compared to other rapid approach Models 	 Accurate & High Reliability However, reliability → accuracy in quantifying minerology & degree of reaction inputs Complex and not suited for rapid implementation 	

TTI Model-2: Pore Solution Chemistry Prediction (Methodology)

Concrete PSC prediction by accounting for

- 1. Total soluble alkali contribution from all concrete ingredients
- 2. Effect of alkali binding by hydration product (CSH) from Cement, FA & SF pozzolanic reactions.

TTI Model-2: Research Approach

TTI Model-2: Results & Validation

TTI Model-2 PSC predictions for binary & ternary mixes from 7-180 days of hydration

TTI Model-2 PSC vs. GEMS Thermodynamic Model

Marginally higher for FA mixes (secondary hydration products); model R2~ 87%

TTI Model-2: Results & Validation

TTI Model-2 PSC vs. Literature Extraction Measurements

- Fly Ash Mixes \rightarrow MAE ~ 7.8%
- − SF Mixes \rightarrow MAE ~ 10.3%

Estimation of F/T performance Using Resistivity / Apparent Formation Factor

 Time to Critical Saturation using Experimental Secondary Sorptivity (ASTM C 1585) > Pore Solution Curing Resistivity → Apparent Formation
 Factor → Secondary Sorptivity (Above) → Time to
 Critical Saturation

