

Controlling Parameters in the design of Concrete slabs Reinforced with Non-metallic reinforcement

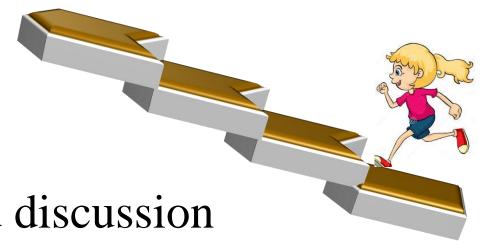
(FRP-RC Slabs)

Zahid Hussain

(PhD student)

Adviser:

Dr. Antonio Nanni


Civil, Architectural, and Environmental Engineering University of Miami

Contents

- Introduction
- **❖** Aim of Study
- Objectives
- Methodology
- Observations and discussion
- Conclusion

INTRODUCTION

CONVENTION

Introduction

CONVENTION

Introduction

- ➤ Reasons for limited use of FRP in the construction industry
 - Lower modulus of elasticity
 - No ductility
 - Possibly higher initial cost
 - Lack of design standards
 - Lack of confidence in designers
- > Focus of FRP reinforcement in the past
 - o Bridges
 - Strengthening of existing structures

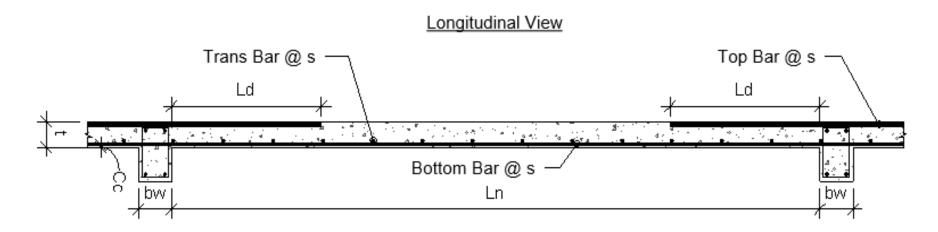
Recent developments

- > FRP material properties and aids
 - Improved modulus of elasticity
 - Improved bond performance
 - Improved manufacturing techniques
 - Availability of design guides
 - Improved confidence in designers
- > Recent trends in the use of FRP
 - Transportation Engineering
 - o Flat work

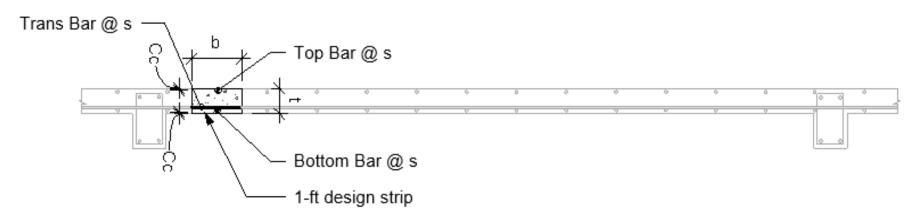
Objectives

- 1. To understand the design issues in FRP RC slabs of residential buildings
- 2. Effects of lower modulus of elasticity of FRP bars and its impact on design of FRP RC slabs
- 3. To develop a relationship between thickness and span of FRP-RC one-way solid non-prestressed slabs

CONVENTION


Methodology

- Slabs were designed with four end conditions
 - 1. Simply supported
 - 2. Both ends continuous
 - 3. One end continuous
 - 4. Cantilever


Mathcad sheets were developed to analyze all the slabs

An Example of a continuous slab

Transverse View

Properties of Materials

Bar Designation	Diameter (in)	Area (in²)	Elastic modulus (ksi)	Tensile strength (ksi)	Concrete strength (ksi)	Bond coefficient k _b	Concrete clear cover (in)
GFRP-04*	0.5	0.2		139.5			
GFRP-05*	0.625	0.31	8,702	132			
GFRP-06*	0.75	0.44		130	4.0	1.35	0.75
GFRP-04	0.5	0.2		108			
GFRP-05	0.625	0.31	6,500	94			
GFRP-06	0.75	0.44		93			

Observations & discussions

Stresses in FRP reinforcement

Development length

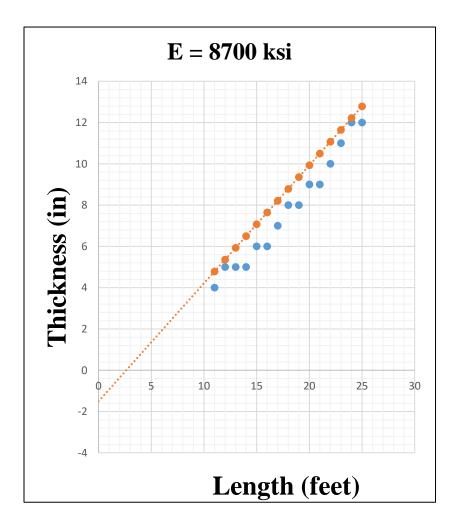
Constructability issues

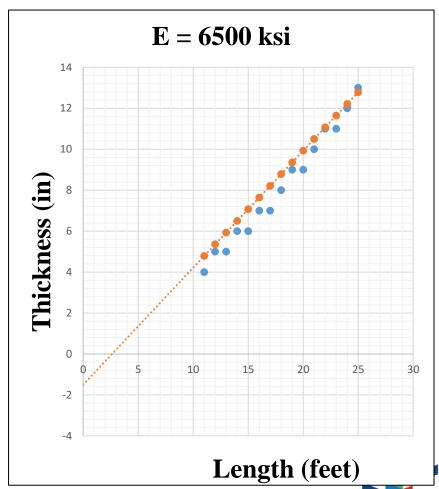
Serviceability issues

Effect of lower modulus of elasticity

Simply supported slabs at max: reinforcement

Designation	Clear span (feet)	h (in)	Bar size @ c/c	Req. Area (in²)	Pro. Area (in²)
F-12	12	5	#4@7.5	0.14	0.31
F-13	13	5	#4@6.5	0.14	0.36
F-14	14	5	#4@2.5	0.14	0.94
F-15	15	6	#4@5	0.18	0.47
F-16	16	6	#4@2.5	(0.18)	0.94




Simply supported slabs designed at A_{fmin}

Designation	Clear span (feet)	h (in)	Bar size @ c/c	Required Area (in²)	Provided Area (in²)
F-12	12	5	#4@7	0.14	0.31
F-13	13	6	#4@7	0.14	0.34
F-14	14	6	#4@7	0.14	0.34
F-15	15	7	#4@6	0.18	0.39
F-16	16	7	#4@6	(0.18)	(0.39)

New v/s old generation bars

Continuous slabs

❖ Positive and negative reinforcement

❖ More reinforcement at mid span

❖The effect of more reinforcement at mid-span

$$I_e = 0.70I_{e+} + 0.15(I_{e1-} + I_{e2-})$$

(24.2.3.6)

Continuous slabs at maximum reinforcement

Desig:	Clear span (ft)	h (in)	Negative Reinforcement	Req. Area (in²)	Prov. Area (in²)	Positive Reinforcement	Req. Area (in²)	Prov. Area (in²)
F-12	12	4	#4@8.5	0.17	0.28	#4@8.5	0.11	0.28
F-13	13	4	#4@8	0.17	0.29	#4@5	0.11	0.47
F-14	14	4	#4@7	0.17	0.34	#4@2.5	0.11	0.94
F-15	15	5	#4@7.5	0.21	0.31	#4@5	0.14	0.47
F-16	16	5	#4@7	0.21	0.34	#4@2.5	0.14	0.94

Continuous slabs at A_{fmin}

Desig:	Clear span (ft)	h (in)	Negative Reinforcement	Req. Area (in ²)	Pro. Area (in²)	Positive Reinforcement	Req. Area (in²)	Pro. Area (in ²)
F-12	12	4	#4@8	0.11	0.29	#4@8	0.11	0.29
F-13	13	4	#4@7	0.11	0.33	#4@7	0.11	0.33
F-14	14	4	#4@7	0.11	0.34	#4@7	0.11	0.37
F-15	15	5	#4@7	0.11	0.34	#4@7	0.14	0.37
F-16	16	6	#4@6	0.14	0.39	#4@6	(0.14)(0.39

Cantilever slabs

Designation	Clear span (feet)	h (in)	Bar size with center to center spacing			Req. Area (in²)	Pro. Area (in²)
GFRP-03	4	4	#4@10	#5@13	#6@15	0.11	0.24
GFRP-04	5	4	#4@7	#5@8	#6@10	0.114	0.34
GFRP-05	6	5	#4@6	#5@8	#6@9	0.143	0.36
GFRP-06	7	6	#4@5	#5@7	#6@9	0.172	0.43

Relationship between length and thickness

Support	condition

$$\mathbf{A}_{\mathbf{f} \ \mathbf{min}}$$

$$f_{c}^{*} = 2500$$

reinforcement

$$\frac{l}{25}$$

$$\frac{l}{20}$$

$$\frac{l}{23}$$

$$\frac{l}{19}$$

$$\frac{l}{32}$$

$$\frac{l}{28}$$

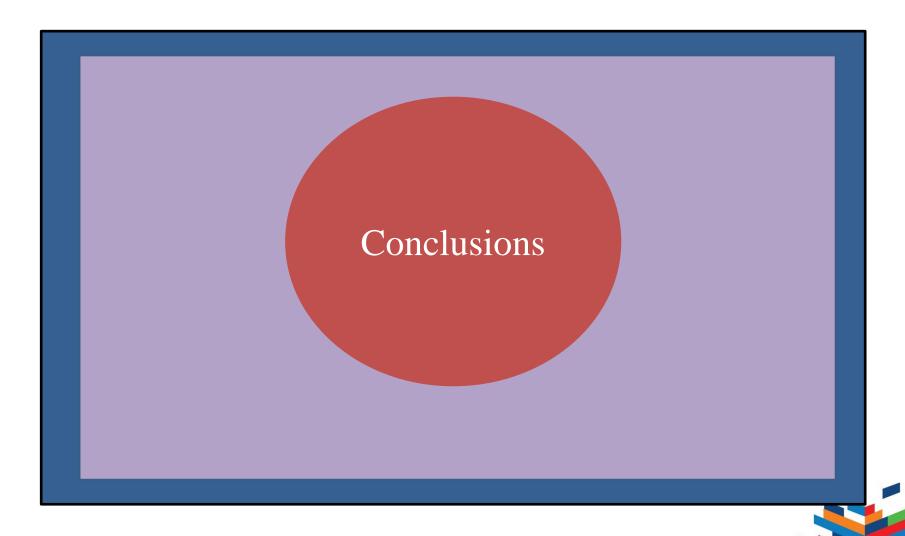
$$\frac{l}{26}$$

$$\frac{l}{22}$$

$$\frac{l}{30}$$

$$\frac{l}{24}$$

$$\frac{l}{28}$$


$$\frac{l}{22}$$

$$\frac{l}{13}$$

$$\frac{l}{10}$$

$$\frac{l}{12}$$

$$\frac{l}{9}$$

Objectives

- ☐ Serviceability controls design
- ☐ More reinforcement and consequently more material is required for FRP-RC slabs
- ☐ Development length values may lead to constructability issues

Conclusions

- ☐ Improvements in material properties have impacted the design
- ☐ Large diameter bars be avoided
- ☐ Design of FRP-RC slabs should be limited to 18 feet

