Lessons Learned from Fabrication and Experimental Testing of Prestressed UHPC H-Piles

Gabrielle Willis

PhD Student, Univ. of Alabama, Tuscaloosa

Sriram Aaleti

Associate Professor, Univ. of Alabama, Tuscaloosa

Outline

- Motivation and Objective
- Section Development
- Pile Fabrication
- Material Testing
- Experimental Testing
- Conclusions
- Next Steps

Motivation

Pile Problems:

- Steel piles:
 - High capacity
 - Damage during driving
 - Low environmental resistance
- Prestressed concrete piles
 - Good environmental resistance compared to steel piles
 - Large cross-section and weight
 - Damage due to tensile driving stresses

Photo: ehsani et al. (2012)

Photo: Moser et al. (2011)

Photo: DiMillio (1998)

Solution

Durable and **Drivable** pile using High performance material such as **Ultra High Performance Concrete (UHPC)**

UHPC

- Compressive strength: Up to 26 ksi
- Tensile Strength Range: 1.1 ksi to 1.7 ksi
- Extremely durable!

• Develop a UHPC H-Pile Comparable to a Steel H-pile

Section Development

- Goals:
 - Create a 12-inch pile comparable to HP12x53
 - Create a 14-inch pile comparable to HP14x89
 - Similar overall dimensions to use the same pile driving cap
 - Maintain UHPC pile weight within 20 lb/ft
 - Precast plant **constructability**
 - Adequate shear capacity
- Tools:
 - Guidance from previous UHPC H-Piles (Iowa State, 2008)
 - First principles analysis
 - Prior UHPC experience

Section Development

- UH12x71
 - (8) 0.6" 270 ksi strands

Section Development

	HP 12x53	UH 12x71	12" PCPS square Pile
Weight	53 lb/ft	71 lb/ft	150 lb/ft
Area	15.5 in ²	65.6 in ²	144 in ²
ALDOT Allowed Load	300 kips	Expected: 460 kips	Not typically used for ALDOT

	HP 14x89	UH 14x105	14" PCPS square Pile
Weight	89 lb/ft	105 lb/ft	204 lb/ft
Area	26.3 in ²	97 in ²	196 in ²
ALDOT Allowed Load	500 kips	Expected: 650 kips	310 kips

Pile Fabrication

- 13 specimens cast, 133 feet total
 - 12" piles: (6) 6.5 foot splices, (3) 12 foot piles
 - 14" piles: (2) 12 foot, (1) 14 foot, and (1) 20 foot piles
- Instrumentation:
 - Foil and embedded gauges placed at transfer length on each end, and at mid-span
 - Gauges monitored before and after pour, as well as during and after detensioning
 - Short-term losses measured

Sample pile instrumentation

Pile Fabrication

- UHPC mixed according to standard protocols
 - Company representatives present to lead mixing process
 - UHPC flow checked according to ASTM C1437
- Poured using overhead bucket
- UHPC able to flow around strands in narrow web
- Piles covered after all were poured
- Allowed to cure in ambient temperature, propane heaters placed on bed ends first two nights

Pile Fabrication

- Some shrinkage cracks, "elephant skin," and voids observed on top flange
 - Possible reason: some piles were not immediately covered after pouring

- Piles detensioned after 2 days
 - Concrete strength at detensioning: 13.9 ksi
 - Required strength: 9 ksi

Short-term Losses

- Losses in select pile
 - Total losses observed over the first two days, including detensioning
 - Elastic shortening losses measured at an average of 23.1 ksi at midspan
 - 25 ksi expected
 - We also see higher shrinkage losses toward the top of the pile, which is less restrained than the bottom

Material Testing

- Compressive Strength
 - 3x6 cylinders tested (ASTM C39, C1856)
 - 1 day strength of 7.0 ksi
 - Release strength of 13.9 ksi
 - Reached 21 ksi by 21 days
- Elastic Modulus
 - 3x6 cylinders tested (ASTM C469, C1856)
 - Elastic Modulus at 3 days: 6100 ksi
- Tensile Strength
 - (8) Direct Tension specimens tested
 - Average strength of 1.4 ksi

Flexural Testing

- Four-point bending used for flexural testing
 - 11.5 foot span, 2 foot spaced load points
- 12-inch pile, weak axis:
 - Expected failure at 37.6 kips, calculated using first principles
 - Actual failure at 37.2 kips
 - Compression controlled failure
 - More than half of capacity retained after failure
 - Theoretical curvature matches well with various experimental curvature measurements

Preliminary Conclusions

- Pile fabrication:
 - Piles must be covered immediately to avoid elephant skin and drying shrinkage cracks
 - Web thickness dictates constructability
 - Expected losses are realistic
- Flexural testing:
 - First principles analysis using measured material properties can capture behaviour

- Continued flexural testing
- Shear capacity testing
- Pile splice testing
- Cast piles into abutments \rightarrow test with axial load

Thank you!

