ceEntek

"UHPC Overlays for Suspension Bridges – The Why & How?"

by Vic Perry

...using Next Generation Nano-engineered UHPC 2.0TM

Our Purpose:

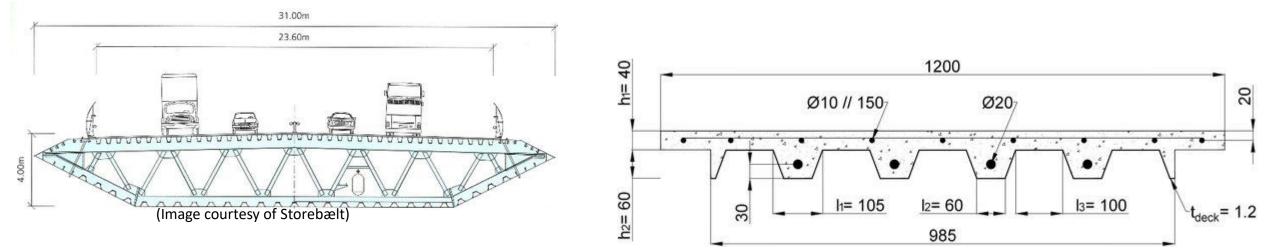
To improve society's quality of life by building more durable and resilient infrastructure with $UHPC 2.0^{TM}$ – the infrastructure that provides clean water, food, sanitation, the movement of goods and the accommodation of people.

"We make a living by what we get, but we make a life by what we give." Winston Churchill

Claiborne Pell Newport Suspension Bridge, RI

- Suspension Bridges The Rehab Problem (Challenges)
- 'Key' Properties of UHPC
- How UHPC Addresses the Challenges of Rehab
- Example of UHPC Overlay on a Suspension Bridge
- Q&A

Suspension Bridges – The Challenges:



March 2022

ceEntek Confidential

Suspension Bridges – The Challenges:

Suspension bridge decks are designed to be light in weight to reduce deadload on the suspension cables and stiff to resist movement (bending & torsion) from wind and traffic. This results in very thin composite decks, with a potential for punch through if too much of the existing concrete material is removed during rehabilitation.

Suspension Bridges – The Challenges:

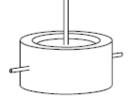
Conducting a rehabilitation on a deck that is 200 ft in the air with slopes and cross-grades that are continuously moving (bending and twisting) from truck traffic, wind and equipment.

'Key' Important* Properties of UHPC for Overlays:

Superior Strength!

Material Characteristic	Conventional Concrete	UHPC	²⁰ hardening Ratio
Compressive Strength	20 to 40 MPa (2.9 to 5.8 ksi)	120 to 250 MPa (17 to 36 ksi)	futur fute
Direct Tensile Strength	1 to 3 MPa (0.15 to 0.44 ksi)	6 to 12 MPa (0.9 to 1.7 ksi)	first crack (Elastic Limit)
Bond Strength (ASTM C1583)	-	> 300 psi Failure in Substrate	5 - Sample 1 - Sample 2 - Sample 3
Elastic Modulus (ASTM C469)	25 to 30 GPa (3600 to 4400 ksi)	40 to 50 GPa (6000 to 7200 ksi)	0.000 0.001 0.002 0.003 0.004 0.005 0.006 Tensile strain Reference: ceEntek

Ultra-high performance concrete (UHPC) — a cementitious composite material with enhanced strength, durability, and ductility compared to high performance concretes.


Note: UHPC may contain fibres for post-cracking ductility, have a specified compressive strength of at least 120 MPa at 28 days, and are formulated with a modified multi-scale particle packing of inorganic materials of less than 0.6 mm diameter (larger sizes may be used).

Reference: CSA A23.1 Annex U- UHPC

'Key' <u>Important*</u> **Properties of UHPC for Overlays:**

Enhanced Bond!

SCHEMATIC - CYLINDERS WITH REBAR

Bar Rupture with 4 d_b in UHPC @ 14,000 psi.

UHPC Interface Bond to Normal Concrete.

ceEntek Confidential

'Key' Important* Properties of UHPC for Overlays:

Superior Durability!

Material Characteristic	Conventional Concrete	HPC	UHPC
Freeze/thaw (ASTM C666) RDM	70 (%)	90 (%)	> 95 (%)
Abrasion Resistance (ASTM C944 Modified -Mass loss)	30+ grams	5 -10 grams	< 1 gram
Permeability in water K _{water}	10 ⁻¹⁰ – 10 ⁻¹¹ (ft/s) 10 ⁻¹¹ – 10 ⁻¹² (m/s)	10 ⁻¹² (ft/s) 10 ⁻¹³ (m/s)	< 2 x 10 ⁻¹³ (ft/s) < 5 x 10 ⁻¹⁴ (m/s)
Absorption, A	$0.002 - 0.006 (lb/ft^2/s^{1/2})$ $0.01 - 0.03 (kg/m^2/s^{1/2})$	$0.0006 - 0.002 (lb/ft^2/s^{1/2})$ $0.003 - 0.01 (kg/m^2/s^{1/2})$	0.00006 (lb/ft ² /s ^{1/2}) 0.0003 (kg/m ² /s ^{1/2})


UHPCs are typically an order of magnitude superior to HPC!

'Key' Important* Properties of UHPC for Overlays: Low Shrinkage!

AASHTO T 160 / ASTM C157/C157M Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete

> CTLGroup ID: FT-157 Client ID: ce200SF-t™

ASTM C1107/C1107M-20 specifies that a Nonshrink Hydraulic Cement Grout shall not have a change in length of more than 0.3% at 28 days.

'Key' Important* Properties of UHPC for Overlays:

Thixotropic Workability!

Photos Courtesy of FHWA

UHPC can be self-leveling, self-consolidating or thixotropic

Example Application of UHPC Overlay

UHPC Overlay

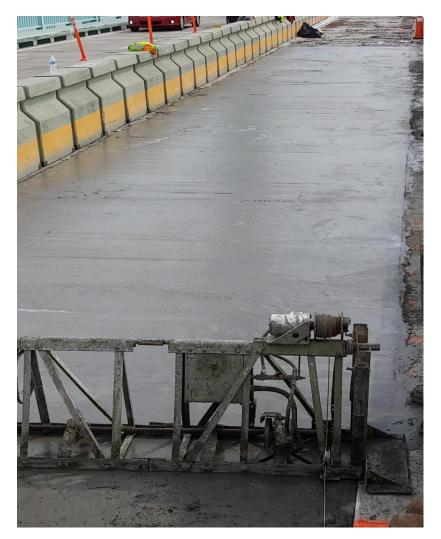
Claiborne Pell Newport Suspension Bridge, RI

March 2022

ceEntek Confidential

Hydro-Demolition of the Claiborne Pell Newport Suspension Bridge, RI (Courtesy of Aetna Bridge)

Finished Surface after Hydro-Demolition of the Claiborne Pell Newport Suspension Bridge, RI



Placing the UHPC Overlay with a Vibrating Bridge Deck Truss Screed.

Placing the UHPC Overlay with a Self-Propelled UHPC Paver.

ceEntek

UHPC Overlay – Newport/Pell Suspension Bridge, RIBTA

The finished surface of UHPC Overlay (L); Sprayed White Pigmented Curing Compound (Top); Covered with Wet burlap & Poly sheet (R).

Finished & Cured UHPC Overlay surface prior to Grinding & Grooving.

UHPC Overlay Surface after Grinding & Grooving.

The 'Big' Opportunity for you:

There are more than 75 Suspension Bridges in North America that have been in-service for more than 50 years, just waiting for their turn to get a UHPC Overlay!

UHPC 2.0TM

THANK YOU!

Vic Perry, FCSCE, MASc., P.Eng President / COO ceEntek North America Ph: 1-403-669-8632 Email: vhperry@ceEntek.com