Dwight Look Engineering Building Office 508D Texas A&M University College Station, TX

MACHINE LEARNING-BASED MIX DESIGN TOOLS TO MINIMIZE CARBON FOOTPRINT AND COST OF UHPC

Cesario Tavares, PhD

Postdoctoral Researcher

Zachry Department of Civil and Environmental Engineering

Texas A&M University

MOTIVATION OF THIS STUDY

Problem Statement

Emergence of UHPC vs Global Sustainability Efforts

Problem Statement

Emergence of UHPC vs Global Sustainability Efforts

Problem Statement

Emergence of UHPC vs Global Sustainability Efforts

Research Questions

- 1. Can we accurately estimate the relationship between **compressive strength** and **mix proportions** of UHPC with a **few experimental runs & ML models**?
- 2. Can we evaluate the effect of changes in mix proportioning on mechanical performance in an easy and intuitive way?
- 3. Can we evaluate the effect of mix proportioning & mechanical performance on cost and eco-efficiency concurrently?
- 4. Are high paste content, high strength (and ultra-high strength) concrete technologies detrimental to cost and/or eco efficiencies?

- 1. Can we accurately estimate the relationship between compressive strength and mix proportions of UHPC with a few experimental runs & ML models?
- 2. Can we evaluate the effect of changes in mix proportioning on mechanical performance in an easy and intuitive way?
- 3. Can we evaluate the effect of mix proportioning & mechanical performance on cost and eco-efficiency concurrently?
- 4. Are high paste content, high strength (and ultra-high strength) concrete technologies detrimental to cost and/or eco efficiencies?

- 1. Can we accurately estimate the relationship between compressive strength and mix proportions of UHPC with a few experimental runs & ML models?
- 2. Can we evaluate the effect of changes in mix proportioning on mechanical performance in an easy and intuitive way?
- 3. Can we evaluate the effect of **mix proportioning & mechanical performance** on **cost and eco-efficiency concurrently**?
- 4. Are high paste content, high strength (and ultra-high strength) concrete technologies detrimental to cost and/or eco efficiencies?

- 1. Can we accurately estimate the relationship between compressive strength and mix proportions of UHPC with a few experimental runs & ML models?
- 2. Can we evaluate the effect of changes in mix proportioning on mechanical performance in an easy and intuitive way?
- 3. Can we evaluate the effect of mix proportioning & mechanical performance on cost and eco-efficiency concurrently?
- 4. Are high paste content, high strength (and ultra-high strength) concrete technologies detrimental to cost and/or eco efficiencies?

Conceptual Framework

Reduced experimental runs

METHODOLOGY

Design strategy

Phase A Phase B

Design strategy

Design strategy

MODELING

Modeling

Methods/algorithms:

- kNN
- Random Forest
- Linear regression (polynomial models)

Modeling

- 1. Can we accurately estimate the relationship between compressive strength and mix proportions of UHPC with a few experimental runs & ML models? -> YES
 - 2. Can we evaluate the effect of changes in mix proportioning on mechanical performance in an easy and intuitive way?
 - 3. Can we evaluate the effect of mix proportioning & mechanical performance on cost and eco-efficiency concurrently?
 - 4. Are high paste content, high strength (and ultra-high strength) concrete technologies detrimental to cost and/or eco efficiencies?

Performance Density Diagrams

PDD

Var 3 (i)

PDD 1. Use to optimize a certain material property (e.g., fc = 130 MPa)

PDD 1. Use to optimize a certain material property (e.g., fc = 130 MPa)

PDD

2. Impose design limits and evaluate alternative mixtures (e.g., fc > 120 MPa)

PDD

3. Use to evaluate predictive structure of models -> detect errors

PDD 5. Evaluate probability of failure occurrences with Categorical PDDs

Results

PDD Phase A

Mixture	SCM repla	fc (MPa)		
#	Slag	Microsilica	Fly Ash	56 days
01	0	7.7	0	109
02	0	10.1	0	120
03	31.5	0.6	3.5	105
04	8.5	2.6	9.2	114
05	23	7.7	0	119
06	27.9	4.6	0.5	126
07	23	5	9.4	111
08	22.4	5.3	2	105
09	26	7	0	119

PDD Phase B

Mixture #	SCM replacing cement (% by wt)			Aggregates replacing cementitious (% by wt)			56 day results	
							New test method	ASTM C1856
	Slag	Microsilica	Fly Ash	Ground Quartz	Concrete Sand	Crushed Sand	f'c (MPa)	f'c (MPa)
C1	0	10.1	0	22	6.5	0	128.4	133.8
C2	22.4	5.25	1.97	22	6.5	0	129.2	158.1
C3	22.4	5.25	1.97	21.5	8.5	22	128.5	154.8

- Can we accurately estimate the compressive strength of UHPC with reduced experimental runs & ML models? -> YES
- Can we evaluate the effect of changes in mix proportioning on mechanical performance in an easy and intuitive way? -> YES
 - 3. Can we evaluate the effect of mix proportioning & mechanical performance on cost and eco-efficiency concurrently?
 - 4. Are high paste content, high strength (and ultra-high strength) concrete technologies detrimental to cost and/or eco efficiencies?

Cost and Environmental Impact

Eco-efficiency Indices

 f_c Compressive strength (MPa)

- λ_{fr} Coefficient for modulus of rupture $\lambda_{fr} = 1.1125e^{-0.004f_c}$
- i_c Volumetric environmental impact (kg CO_{2-eq}/m³)

[1] proposed by Kourehpaz and Miller (Kourehpaz and Miller 2019)
[2] proposed modification in this work

Cost-efficiency Indices

$$\rho_{column} = \frac{u_c}{f_c} \qquad \qquad \rho_{cracking} = \lambda_{fr} \left(\frac{u_c}{f_c^{0.25}} \right)$$

 f_c Compressive strength (MPa)

 λ_{fr} Coefficient for modulus of rupture

$$\lambda_{fr} = 1.1125e^{-0.004f_c}$$

 u_c Volumetric unit cost (\$/m³)

Volumetric environmental impact vs Eco-Efficiency Density Diagrams

 $TotalGWP = i_c (ingredientA) + i_c (ingredientB) + ...$ (kg CO_{2-eq}/m³)

Volumetric Unit Cost vs Cost-Efficiency Density Diagrams

Volumetric Indicators vs Efficiency Indicators

		aggregates (% by wt) replacing cementitious content					
Mix #	Description	concrete sand	crushed sand	ground quartz	Total Cost (\$/m³)	ρ_column	fc (MPa)
ρ-Col-1	with min(ρ_column)	21.5	2.5	0	233	2.08	112
ρ-Col-2	with min(Total Cost)	25	25	0	190	2.37	80
ρ-Col-3	same ρ_column ρ-Col-2 & higher cost	11	2.5	11.5	279	2.37	118
ρ-Col-4	with lowest predicted strength	22	17.5	14	240	3.21	74.8
ρ-Col-5	with highest predicted strength	9.5	0	19	303	2.56	118
					Total GWP (kg CO₂-eq/m³)	χ_column	fc (MPa)
χ-Col-1	with min(χ_column)	20.5	25	25	625	6.58	95
χ-Col-2	with min(Total GWP)	25	25	25	552	6.75	82
χ-Col-3	same χ_column as χ-Col-2 & higher GWP	19.5	25	25	641	6.75	95
χ-Col-4	with lowest predicted strength	22	17.5	14	875	11.70	74.8
χ-Col-5	with highest predicted strength	9.5	0	19	1197	10.10	118

Filtered Eco-Efficiency Density Diagrams

Key questions addressed in this research

- Can we accurately estimate the compressive strength of UHPC with reduced experimental runs & ML models? -> YES
- 2. Can we evaluate the effect of changes in mix proportioning on mechanical performance in an easy and intuitive way? -> YES
- 3. Can we evaluate the effect of mix proportioning & mechanical performance on cost and eco-efficiency concurrently? -> YES
 - 4. Are high paste content, high strength (and ultra-high strength) concrete technologies detrimental to cost and/or eco efficiencies?

COMPARISON BETWEEN DIFFERENT CONCRETE TECHNOLOGIES

- HPC and UHPC mixtures from Sections 6.6 and 7.2 (Tables 7, 8, 9 and 10)
- HSCs mixtures from the literature
- SCC mixtures from the literature
- Traditional concrete mixtures from the literature
- UHPC mixtures from Section 5.2 (Fig.16) following new test protocol
- UHPC mixtures from Section 5.2 (Fig.16) following ASTM C1856
- ▲ UHPC mixtures from the literature

Key questions addressed in this research

- Can we accurately estimate the compressive strength of UHPC with reduced experimental runs & ML models? -> YES
- 2. Can we evaluate the effect of changes in mix proportioning on mechanical performance in an easy and intuitive way? -> YES
- 3. Can we evaluate the effect of mix proportioning & mechanical performance on cost and eco-efficiency concurrently? -> YES
- 4. Are high paste content, high strength (and ultra-high strength) concrete technologies detrimental to cost and/or eco efficiencies? -> NO

CONCLUSIONS

Ā M

- Can we accurately estimate the compressive strength of UHPC with reduced experimental runs & ML models? -> YES (OA+ML)
- 2. Can we evaluate the effect of changes in mix proportioning on mechanical performance in an easy and intuitive way? -> YES (PDD)
- 3. Can we evaluate the effect of mix proportioning & mechanical performance on cost and eco-efficiency concurrently? -> YES (CEDD & EEDD)
- 4. Are high paste content, high strength (and ultra-high strength) concrete technologies detrimental to cost and/or eco efficiencies? -> NO

IMPLICATIONS

- This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs
- Facilitate decision making (material availability, cost, accessibility, embodied CO2)
- Facilitate communication between non-expert personnel (in AI and materials) involved in projects (owners, policy makers, designers, architects and producers)
- Lift mis-conceptional barriers on UHPC -> promote application where suitable
- Encourage innovative mix designs with new materials (e.g., nanomaterials)

- This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs
- Facilitate decision making (material availability, cost, accessibility, embodied CO2)
- Facilitate communication between non-expert personnel (in AI and materials) involved in projects (owners, policy makers, designers, architects and producers)
- Lift mis-conceptional barriers on UHPC -> promote application where suitable
- Encourage innovative mix designs with new materials (e.g., nanomaterials)

- This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs
- Facilitate decision making (material availability, cost, accessibility, embodied CO2)
- Facilitate communication between non-expert personnel (in AI and materials) involved in projects (owners, policy makers, designers, architects and producers)
- Lift mis-conceptional barriers on UHPC -> promote application where suitable
- Encourage innovative mix designs with new materials (e.g., nanomaterials)

- This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs
- Facilitate decision making (material availability, cost, accessibility, embodied CO2)
- Facilitate communication between non-expert personnel (in AI and materials) involved in projects (owners, policy makers, designers, architects and producers)
- Lift mis-conceptional barriers on UHPC -> promote application where suitable
- Encourage innovative mix designs with new materials (e.g., nanomaterials)

- This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs
- Facilitate decision making (material availability, cost, accessibility, embodied CO2)
- Facilitate communication between non-expert personnel (in AI and materials) involved in projects (owners, policy makers, designers, architects and producers)
- Lift mis-conceptional barriers on UHPC -> promote application where suitable
- Encourage innovative mix designs with new materials (e.g., nanomaterials)

FUTURE WORK

- New indices -> CO2 of reinforcing steel on eco-efficiency
- New indices -> difference in span achieved in bridge elements (beams, girders) for different concretes -> weight of the superstructure -> number and volume of supporting substructural elements (columns, footing and piles)
- PDDs to optimize material properties other than compressive strength should be explored (e.g., fiber reinforced concretes)

- New indices -> CO2 of reinforcing steel on eco-efficiency
- New indices -> difference in span achieved in bridge elements (beams, girders) for different concretes -> weight of the superstructure -> number and volume of supporting substructural elements (columns, footing and piles)
- PDDs to optimize material properties other than compressive strength should be explored (e.g., fiber reinforced concretes)

- Further improvement of the end-specimen conditions -> strengths over 125 MPa
- New indices -> CO2 of reinforcing steel on eco-efficiency
- New indices -> difference in span achieved in bridge elements (beams, girders) for different concretes -> weight of the superstructure -> number and volume of supporting substructural elements (columns, footing and piles)
- PDDs to optimize material properties other than compressive strength should be explored (e.g., fiber reinforced concretes)

- New models -> inputs related to individual particle make-up (fineness, characteristic particle size and compound composition of the raw ingredients) -> potential to overcome the multi-source variability issue
- Inclusion of nanomaterials & fibers should be evaluated through standard test protocols -> compare UHPCs w/ much higher strengths vs other concretes

- New models -> inputs related to individual particle make-up (fineness, characteristic particle size and compound composition of the raw ingredients) -> potential to overcome the multi-source variability issue
- Inclusion of nanomaterials & fibers should be evaluated through standard test protocols -> compare UHPCs w/ much higher strengths vs other concretes

Upcoming Publications

C. Tavares, *Multi-Objective Density Diagrams Developed with Machine Learning Models to Optimize Sustainability and Cost-Efficiency of UHPC Mix Design,* Ph.D. dissertation, Texas A&M University (May 2022)

- **C. Tavares**, X. Wang, S. Saha, Z. Grasley, *Machine Learning-Based Mix Design Tools to Minimize Carbon Footprint and Cost of UHPC. Part 1: Efficient Data Collection and Modeling* (under review 2022)
- **C. Tavares** and Z. Grasley, *Machine Learning-Based Mix Design Tools to Minimize Carbon Footprint and Cost of UHPC. Part 2: Cost- and Eco-Efficiency Density Diagrams* (under review 2022)

References

Kourehpaz, Pouria, and Sabbie A. Miller. 2019. 'Eco-efficient design indices for reinforced concrete members', *Materials and Structures*, 52: 96.

THANK YOU!

Cesario Tavares, PhD Postdoctoral Researcher Zachry Department of Civil & Environmental Engineering | Texas A&M University email: <u>cesariotavares@tamu.edu</u> phone: (832)819-9856 web: <u>https://www.linkedin.com/in/cesariotavares/</u>

APPENDIX

$$f_r = 0.62 \sqrt{f_c(MPa)}$$

$$f_r = 0.94 \sqrt{f_c(MPa)}$$

$$f_r = 2.55 \sqrt{f_c(MPa)}$$

3D density plots -> predictive structure

Modeling

Modeling

Evaluating predictive performance of models:

- 3D density plots
- RMSE
- Correlation plots (predictions vs actual outcomes)

R² is only applicable to evaluate linear regression*

*Spiess and Neumeyer, An evaluation of R² as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach

Eco-efficiency Indices

Eco-efficiency Indices

$$\begin{split} h &= 0.866 \frac{w^{0.5}l}{b^{0.5} f_r^{0.5}} & \tilde{I} = l(bh - A_s)i_c + lA_s i_s \\ \text{ACI 318 building code (NSC): fc < 55MPa} \\ \text{ACI 363 (HSC): fc > 55MPa} & f_r = 0.62\sqrt{f_c(MPa)} \\ f_r = 0.94\sqrt{f_c(MPa)} \\ \text{ACI 239 (UHPC): fc > 150 MPa} & f_r = 2.55\sqrt{f_c(MPa)} \\ \hline \tilde{I} = l^2 (wb)^{0.5} \lambda_{fr} \left(\frac{i_c}{f_c^{0.25}}\right) - lA_s i_c + lA_s i_s \end{split}$$

Eco-efficiency Indices

$$\tilde{I} = l^2 (wb)^{0.5} \lambda_{fr} \left(\frac{i_c}{f_c^{0.25}} \right) - lA_s i_c + lA_s i_s$$

$$\chi_{cracking} = \lambda_{fr} \left(\frac{i_c}{f_c^{0.25}} \right)$$