

Development of a Screening Tool to Predict Optimum Fly Ash Dosage for ASR Mitigation In Concrete

Pravin Saraswatula

Ph.D. Candidate (TAMU) (& today's speaker)

Anol K Mukhopadhyay, Ph.D., P.G.

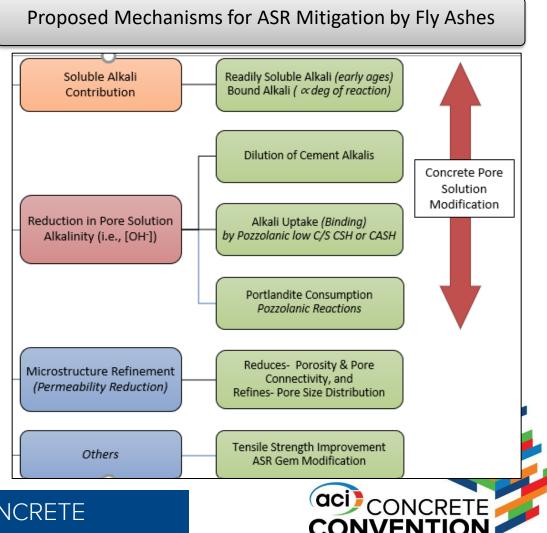
Senior Research Scientist (TTI) & Adjunct Professor (TAMU)

Kai Wei Liu, Ph.D.

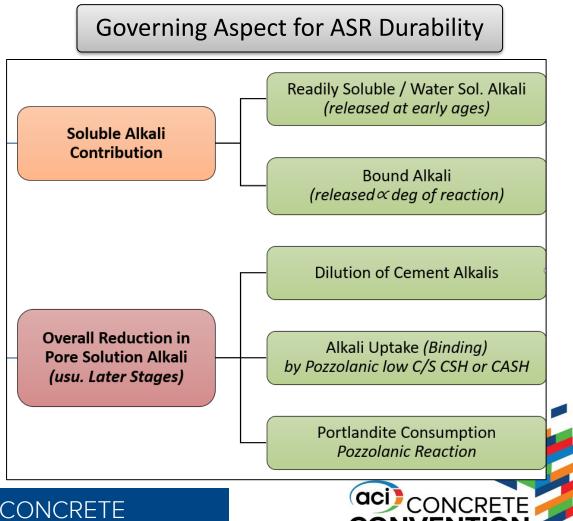
Assistant Research Scientist (TTI)

Alkali Silica Reaction (ASR)

- Alkali-silica reactivity (ASR) remains a major durability issue affecting concrete structures, including heavy civil infrastructure, such as dams, bridges, pavements, etc.,
 - [Alkali hydroxides]_{Conc pore solution} + [Reactive Silica Minerals]_{Aggregates} → ASR Gel (Hygroscopic & Expansive)
- Three requirements for damaging ASR
 - Sufficient Quantity of Reactive Silica (within aggregates)
 - Sufficient concentration of alkali (primarily from portland cement)
 - Sufficient moisture



Alkali Silica Reaction - Mitigation


- ASR Mitigation : Primary Approach -Design By Avoidance (Elimination of requirements)
 - Use Non-Reactive Aggregates → Not Always Feasible
 - Use of Low Alkali Cement to Lower Pore Solution Alkalinity → Not Effective (by itself)
 - Use of SCMs (especially Fly Ashes) is most common practice for ASR Mitigation

Alkali Silica Reaction - Mitigation

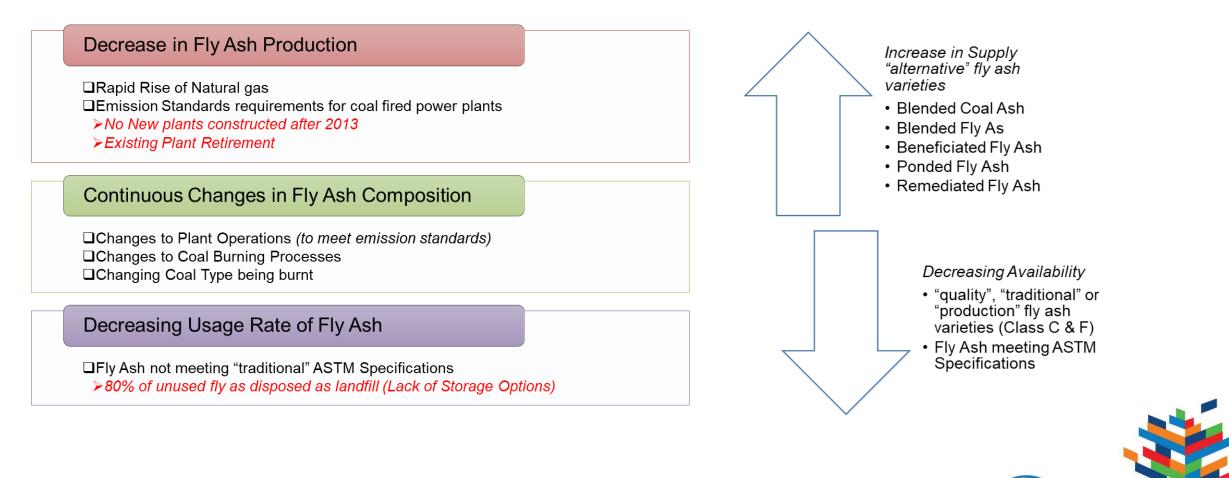
- Use of SCMs (especially Fly Ashes) is most common practice for ASR Mitigation
 - Concrete Pore Solution Modification by Fly Ashes: Governing Aspect for ASR Durability

Performance Based Evaluation Approach for ASR Mitigation

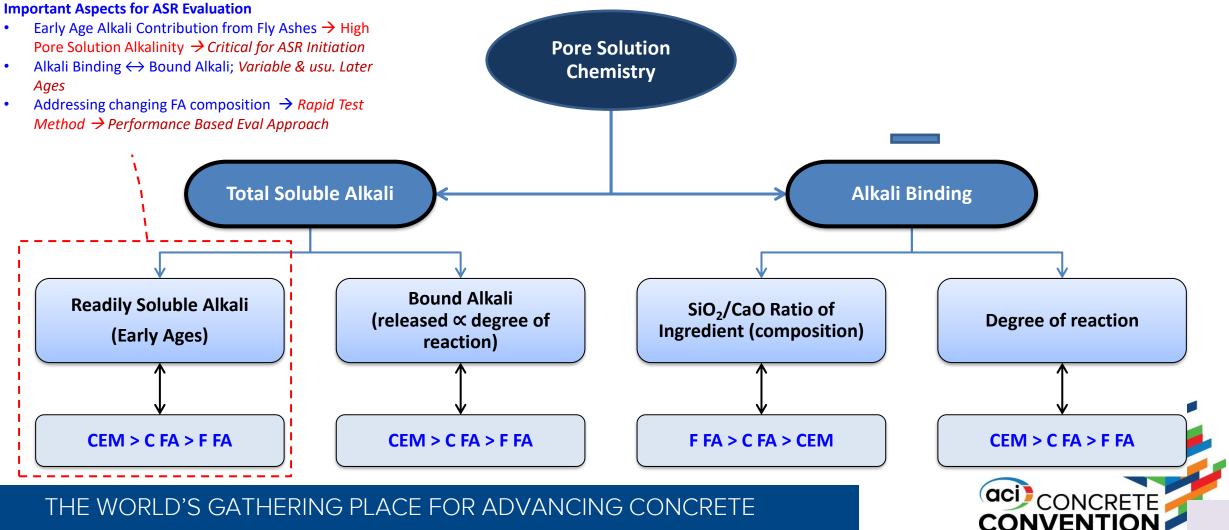
- Objective: Determination of Optimum Fly Ash (FA) Dosage for ASR Mitigation
- Primary Approach: ASR Tests
 - Testing at Multiple Replacement Levels →
 Optimum FA dosage (≤ threshold expansion)
 - Time Consuming, cost and labor intensive
 - Not Ideal for Rapid Fly Ash Evaluation

	Test Attributes				
Test Method	Alkali boosting	and Fly Ash		Time Duration	
ASTM C 1567 (Accelerated Mortar Bar Test)	✓	×	No	14-16 days	
ASTM C 1293 (Concrete Prism Test)	~	~	No	2 years	
AASHTO T 380 (Miniature Concrete Prism Test)	√	×	No	75 - 90 days	
AASHTO TP 142 (Accelerated Concrete Cylinder Test)	×	×	Yes	75 – 90 days	

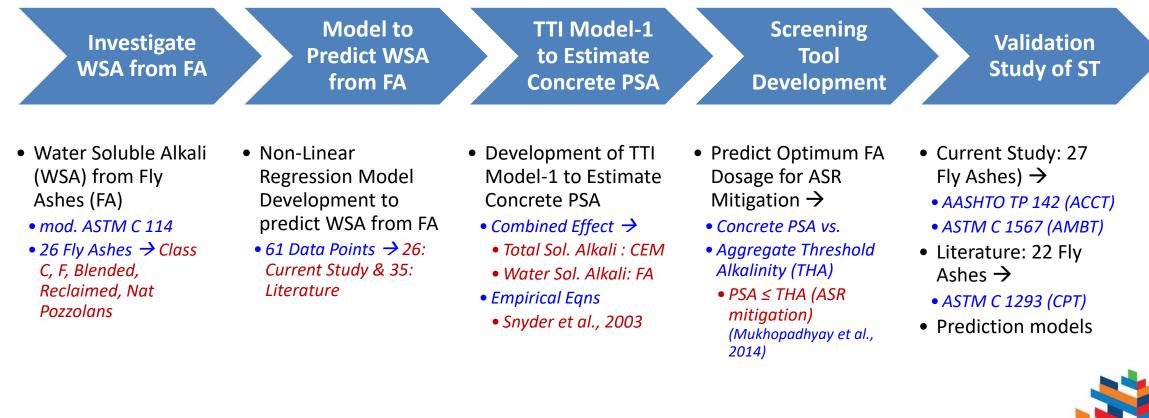
Performance Based Evaluation Approach for ASR Mitigation


- Objective: Determination of Optimum Fly Ash (FA) Dosage for ASR Mitigation
- Rapid Approach: Prediction Models/Prescriptive Approaches
 - − Cement and FA Bulk Oxide Composition →
 Predict Optimum FA dosage
 - Regression Approaches based on Expansion Measurements
 - Do not address influence of Pore Solution on ASR evaluation

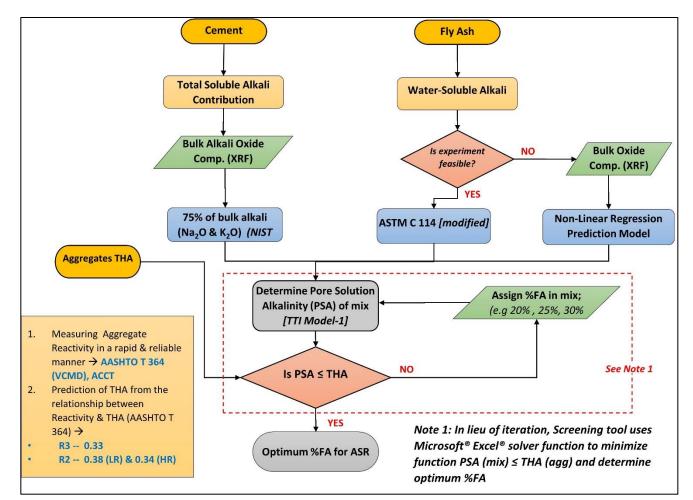
Approach	Methodology	Effect of Fly Ash Soluble Alkali	Effect of pore solution
ASTM C 1778 / AASHTO R 80	Prescriptive & only for Class F FA (<18% CaO)	Νο	No
Chemical Index Model	Regression & Based on ASTM C 1567	Νο	No
Extended Chemical Index Model	Regression & Based on ASTM C 1293	Νο	No



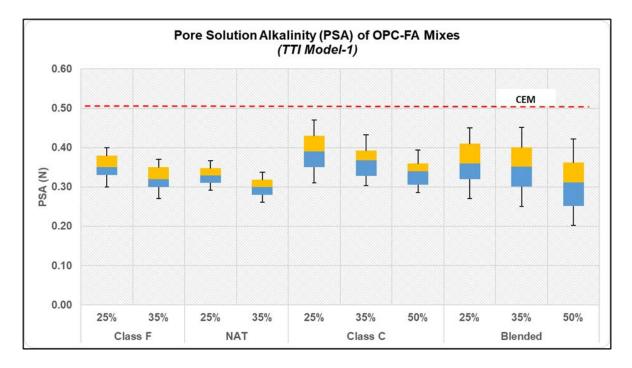
Current Challenge: Changing Fly Ash Composition



Application of Pore Solution for Rapid ASR Evaluation

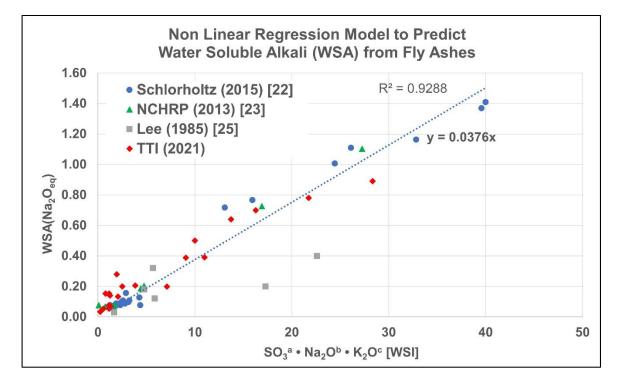

Objective: Development of a Screening Tool to Predict Optimum Fly Ash Dosage in Concrete for ASR Mitigation

Methodology



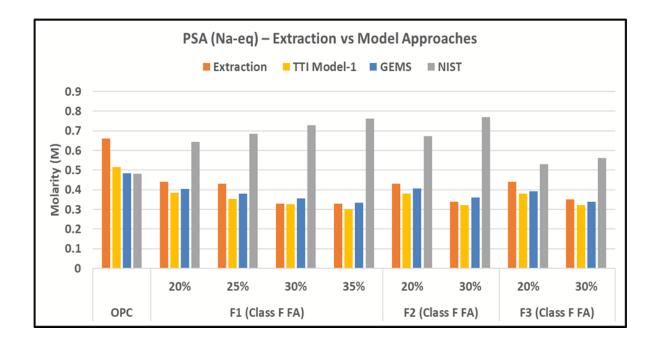
Major Findings & Results

- Certain Class C FA and blended fly ashes contribute very high levels of soluble alkali at early ages
 - Significant modification of concrete PSA by FA



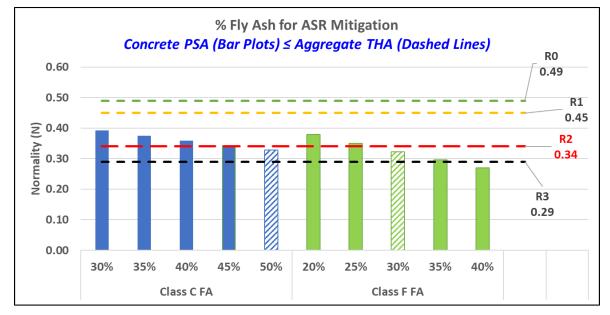
Major Findings & Results

- Nonlinear Regression Model to Predict Water Soluble Alkali from Fly Ashes
 - − Primary Variables → Na₂O, K₂O & SO₃ (p value <5%)</p>
 - $R^2 = 0.92$, MAE = 6.7%



Major Findings & Results

- TTI Model-1 PSA Determination
 - Good reliability in PSA Determination
 - 4.3% MAE, 6.2% RMSE with extraction measurements



Results – Screening Tool Predictions

- Fly Ash Replacement Level Depends on
 - 1. Concrete Pore Solution Alkalinity (PSA)
 - TTI Model-1
 - 2. Aggregate Threshold Alkalinity (THA)
 - Aggregate Reactivity vs. THA (Mukhopadhyay et al., 2014)

Aggregate	Reactivity	Class	THA, N	C1260	C1293
А	Very Highly Reactive	R3	0.29	1.3	n/a
В	Highly Reactivity	R2	0.34	0.381	0.391
С	Moderately Reactive	R1	0.45	0.317	0.058
D	Slow Reactivity	RO	0.49	0.1	0.054

Screening Tool Predictions for R2 Aggregate

- Class C FA: 48%
- Class F FA: 28%

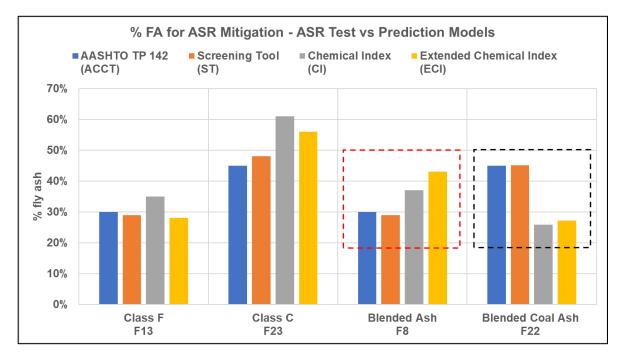
> AASHTO TP 142 Test (ACCT) for R2 Aggregate

- Class C FA: 45-40%
- Class F FA: 25%

Results - Screening Tool vs. ASR Tests

- 27 Fly Ashes Evaluated in Current Study.
 - ASR Tests: AASHTO TP 142 (ACCT) & ASTM C 1567 (AMBT): → % Fly Ash ≤ Threshold Expansion
 - Screening Tool (ST) \rightarrow Predictions of Optimum Fly Ash Dosage

Classification Group	Group Description	No. of Fly Ashes		
G1	ST = ACCT = ASTM C 1567	14 / 27 ≈ 52%		
G2	ST = ACCT; <i>but ASTM C 1567 underestimates</i>	9 / 27 ≈ 33%		
G3	ST Predictions ± 5-8% deviation compared to both ACCT & ASTM C1567	4 / 27 ≈ 15%		

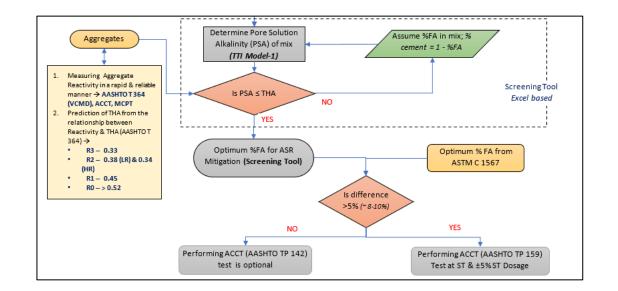


Major Findings – Sensitivity of Prediction Models

• Fly Ash ASR performance is contingent on minerology characteristics and not bulk oxide composition (e.g., F8 & F22)

— F8

- Blended ash: 50% Class C ash + 50% pumice
- ASTM C 618: Class C but Behaves as Class F
- -F22
 - Blended coal ash: 80% PRB + 20% lignite
 - ASTM C 618: Class F but *Behaves as Class C*



Recommendations on Screening Tool Application

- Preventive Measures (Proposed Performance-based Approach)
 - Screening tool to determine Fly Ash (FA) Content
 - 1 day → ASTM C 114 mod. test to *measure* WSA from FA (~1-2 hrs./test)
 - Instantly → Non-Linear Regression model to predict WSA from FA
 - 2. Compare fly ash content by screening tool vs ASTM C1567 (14 days)
 - 3. Selective ACCT validation for the mismatch cases: 75-90 days

Results - Mean Absolute Error (MAE) (Predictions vs. Tests)

- Prediction Models vs. ASR Tests
 - Screening Tool: ST
 - Chemical Index: Cl
 - Extended Chemical Index: ECI
- Screening Tool Predictions:
 - Low MAE ($\leq \pm 6-8\%$) vs. ASR tests;
 - Lowest MAE vs. other prediction models,
 - Higher accuracy & reliability in predictions for unconventional ashes — blended, reclaimed & natural pozzolans

	27 Fly Ashes (Current Study)				22 Fly Ashes (Literature)				
	vs. AASHTO TP 142 (ACCT)		vs. ASTM C 1567 (AMBT)		vs. ASTM C 1293 (CPT)				
	ST	CI	ECI	ST	CI	ECI	ST	CI	ECI
Overall	3.5%	6.1%	6.7%	4.6%	5.5%	8.3%	9.2%	12.4%	10.4%
Class C	4.6%	16.0%	20.9%	6.6%	22.0%	26.9%	13.4%	18.6%	13.7%
Class F	3.3%	3.9%	4.1%	3.9%	3.6%	6.7%	5.6%	6.3%	7.5%
Blended & Reclaimed	4.1%	7.6%	7.6%	-	-	-	-	-	
Natural Pozzolans	1.9%	8.5%	6.9%	3.1%	3.5%	1.9%	-	-	

Vayghan et al., 2016)

Conclusions

- 1. Consideration of Pore Solution Alkalinity (PSA) is Important for ASR Evaluation
- 2. Certain fly ashes contribute significant water soluble alkali into pore solution
 - Significant modification of concrete pore solution (i.e., high pore solution alkalinity)
- 3. TTI Model -1: Combined Effect of Soluble Alkali: Cement & Fly Ashes
 - Good reliability in PSA determination
- 4. Screening Tool is not a regression model. Optimum FA dosage is dependent upon two fundamental chemical parameters:
 - Concrete PSA ≤ Aggregate THA relationship
- 5. Screening Tool Predictions:
 - Low MAE (≤ ± 6-8%) vs. ASR tests; Lowest MAE vs. other prediction models; Higher reliability for unconventional ashes blended, reclaimed & natural pozzolans

Acknowledgements

Texas Department of Transportation (TxDOT) American Coal Ash Association Educational Foundation (ACAAEF) United States Bureau of Reclamation Los Alamos National Laboratory

Thank you

Any Questions?

Anol K. Mukhopadhyay, Ph.D., P.G., (<u>anol@tamu.edu</u>)

Pravin Saraswatula, E.I.T. (spravin112@tamu.edu

Kai-Wei (Victor) Liu (k-liu@tti.tamu.edu)

