**ACI Research in Progress (Part 1)** 

**Monday March 28** 

# **Shrinkage Cracking Control of Concrete Using Non-Metallic Rebars and Meshes**

Hossein Roghani, Ph.D. Student, University of Miami Francisco De Caso, Ph.D., LEED, AP, University of Miami Antonio Nanni, Ph.D. PE, FACI, FASCE, FIIFC, University of Miami





### Introduction

# **Plastic Shrinkage Cracking**

- Has been studied over the last 60 years
- One of the earliest flaws in concrete
- Caused by restrained volumetric changes in the first 3-8 hours after casting
- Reduces concrete durability and structural service life



Fig. 1. Plastic shrinkage crack



## Introduction

# **Driving causes of plastic shrinkage**

- Settlement of solid particles
- Bleeding ۲
- Evaporation •
- Capillary action
- Surface finishing ۲

But how to control it?



### Material

# Shrinkage cracking control

- Alternative concrete mixture
- Concrete surface sealers
- Curing techniques



Fig. 4. FRP Mesh



• Fiber Reinforced Polymer (FRP) reinforcement

Fig. 5. FRP bars



### What is a sustainable material?

- Last longer
- Require lower energy
- Emit less carbon dioxide

### **Environmental impact of FRP**

- Increase service life of structure
- Decrease CO2 emissions
- Lower energy consumption

| Reference                       | Type of<br>FRP | FRP Re-<br>placement<br>% to Steel<br>Rebars | Environmental Impact<br>Category           | Reduction<br>% in the<br>Environmental<br>impact due to |
|---------------------------------|----------------|----------------------------------------------|--------------------------------------------|---------------------------------------------------------|
| Garg and Shrivastava,<br>(2019) | GFRP           | 100%                                         | Global Warming (CO <sub>2</sub> emissions) | 43%                                                     |
| Garg and Shrivastava,<br>(2019) | GFRP           | 100%                                         | Energy Consumption                         | 47%                                                     |
| Garg and Shrivastava,<br>(2019) | BFRP           | 100%                                         | Global Warming (CO <sub>2</sub> emissions) | 40%                                                     |
| Garg and Shrivastava,<br>(2019) | BFRP           | 100%                                         | Energy Consumption                         | 50%                                                     |
| Garg and Shrivastava,<br>(2019) | CFRP           | 100%                                         | Global Warming (CO <sub>2</sub> emissions) | 39%                                                     |
| Garg and Shrivastava,<br>(2019) | CFRP           | 100%                                         | Energy Consumption                         | 32%                                                     |
| Van Loon et al. (2019)          | E-glass        | 46%                                          | Shadow Cost                                | 28%                                                     |
| Van Loon et al. (2019)          | Flax           | 46%                                          | Shadow Cost                                | 39%                                                     |
| Van Loon et al. (2019)          | Kenaf          | 39%                                          | Shadow Cost                                | 36%                                                     |
| Inman et al. (2017)             | BFRP           | 100%                                         | Global Warming (CO <sub>2</sub> emissions) | 62%                                                     |
| Inman et al. (2017)             | BFRP           | 100%                                         | Ozone Depletion                            | 21%                                                     |
| Inman et al. (2017)             | BFRP           | 100%                                         | Human Toxicity                             | 78%                                                     |

**Table. 1.** Comparison of LCA results of replacement of theconventional steel reinforcement by FRP composites

JCRETE

# **Plastic Shrinkage Cracking Test**

### **Modified ASTM C1579**

• Based on guidelines of ASTM C1579 and

### AC521

- Evaluate FRP as secondary reinforcement
- To compare of FRP and steel for

controlling shrinkage cracks



# **Plastic Shrinkage Cracking Test**

### Mold

Each specimen contains 2 sections

1. FRP

2. Steel

### Wind tunnel

- To obtain a laminar wind flow
- Accelerate evaporation and provide a severe condition



Fig. 7. Mold and reinforcement configuration



Fig. 8. Wind Tunnel Design



### **Influential parameters**

- Environmental variables (wind speed, RH, ambient temperature)
- Material characteristics (reinforcement and concrete)
- Restraint conditions (at both ends)
- Stress concentration (riser)
- Clear concrete cover (0.75 in.)
- Base roughness (steel plate)
- Workmanship



### **Environmental variables**

- Wind speed measured at midspan using an anemometer
- RH and ambient temperature measured
  - using a thermometer in the wind tunnel

| Measurement | Temperature (inside the wind tunnel) [°F] | RH (inside the tunnel)<br>[%] | Wind Speed (at Mid<br>span) [m/s] |  |
|-------------|-------------------------------------------|-------------------------------|-----------------------------------|--|
| 1           | 72.2                                      | 66.0                          | 4.4                               |  |
| 2           | 71.6                                      | 61.0                          | 4.6                               |  |
| 3           | 72.2                                      | 62.0                          | 4.4                               |  |
| 4           | 72.9                                      | 59.0                          | 4.6                               |  |
| 5           | 72.9                                      | 59.0                          | 4.5                               |  |
| 6           | 72.4                                      | 60.0                          | 4.6                               |  |
| 7           | 73.3                                      | 62.0                          | 4.7                               |  |
| 8           | 73.6                                      | 59.0                          | 4.6                               |  |
| 9           | 73.3                                      | 60.0                          | 4.5                               |  |
| 10          | 72.9                                      | 59.5                          | 4.5                               |  |
| 11          | 72.5                                      | 60.0                          | 4.5                               |  |
| 12          | 72.9                                      | 62.0                          | 4.8                               |  |
| 13          | 72.9                                      | 60.0                          | 4.6                               |  |
| 14          | 72.9                                      | 60.0                          | 4.5                               |  |
| 15          | 72.9                                      | 60.0                          | 4.5                               |  |
| 16          | 72                                        | 60.0                          | 4.5                               |  |
| Average     | 72.7                                      | 60.6                          | 4.5                               |  |

Table. 2. Environmental variables measurement



## Material characteristics

- FRP
  - 1. Tensile properties (ASTM D7957 and D7205)
  - 2. Surface enhancement (surface roughness)
  - 3. Bond strength (ASTM D7957 and D7913)

- Concrete
  - 1. Compressive and tensile strength
  - 2. Time of setting (ASTM C403)
  - 3. Concrete temperature (implementing sensors in concrete)
  - 4. Rate of evaporation

| Specimen ID   |            | Tensile Force<br>P <sub>Max</sub> |       | Nominal Area<br>A <sub>nom</sub> |                 | Ultimate Strength<br>F <sup>tu</sup> nom |       | Modulus of Elasticity $E_{nom}$ |      | Ultimate Strain $\varepsilon_{tnom}$ |
|---------------|------------|-----------------------------------|-------|----------------------------------|-----------------|------------------------------------------|-------|---------------------------------|------|--------------------------------------|
|               |            | KN                                | Kips  | <i>mm</i> <sup>2</sup>           | in <sup>2</sup> | Мра                                      | Ksi   | GPa                             | Msi  | %                                    |
| A-35L1 TNS 01 |            | 72.06                             | 16.20 |                                  |                 | 1015.4                                   | 147.3 | 53.4                            | 7.75 | 1.9                                  |
| A-35L1 TNS 02 |            | 71.42                             | 16.10 |                                  |                 | 1006.4                                   | 146   | 54.2                            | 7.86 | 1.86                                 |
| A-35L1 TNS 03 |            | 74.30                             | 16.70 | 71                               | 0.11            | 1046.9                                   | 151.8 | 51.1                            | 7.41 | 2.05                                 |
| A-35L1 TNS 04 |            | 73.72                             | 16.60 |                                  |                 | 1038.8                                   | 150.7 | 52.4                            | 7.61 | 1.98                                 |
| A-35L1 TNS 05 |            | 72.06                             | 16.20 |                                  |                 | 1015.4                                   | 147.3 | 53.3                            | 7.73 | 1.91                                 |
|               | Average    | 72.71                             | 16.36 |                                  |                 | 1024.6                                   | 148.6 | 52.9                            | 7.67 | 1.94                                 |
|               |            | 1.23                              | 0.27  |                                  |                 | 17.32                                    | 2.49  | 1.18                            | 0.17 | 0.08                                 |
|               | CV%        | 1.69                              | 1.65  |                                  |                 | 1.69                                     | 1.67  | 2.24                            | 2.23 | 3.87                                 |
| Garantood Tor | acilo Load | 60.02                             | 15 55 |                                  |                 |                                          |       |                                 |      |                                      |

Garanteed Tensile Load 69.02 15.55

Table. 3. FRP bar tensile properties



## **Evaluate Cracking Control**

### **Crack Measurements**

- Depth
- Width
- Length
- Area

Crack reduction ratio is computed to evaluate FRP performance:



Fig. 10. Processed image of concrete surface

Fig. 11. Concrete core

$$CRR = [1 - \frac{Average \ Crack \ Width \ of \ section \ reinforced \ with \ FRP}{Average \ Crack \ Width \ of \ section \ reinforced \ with \ steel}]$$



1- Provide experimental evidence to show efficiency of FRP to control plastic shrinkage cracks

2- Establish feasible equivalency between FRP and steel

3- Minimum FRP reinforcement as secondary reinforcement (temperature and shrinkage

reinforcement)

4- A standard test method to evaluate FRP as secondary reinforcement





