# Surface-functionalization of concrete via nano-modified releasing agent design

<u>Pengkun Hou<sup>a</sup></u>, Xin Cheng<sup>a</sup>, Surendra P. Shah<sup>b</sup>

a School of Materials Science and Engineering, University of Jinan, 250022, Shandong, China b Department of Civil and Environmental Engineering, Texas University at Arlington, USA

pkhou@163.com



#### Table of content

- 1. Role of concrete surface and releasing agent
- 2. Nano-engineered Releasing Agent (nERA)
- 3. nERA on cement hydration and hardening properties
- 4. On surface quality improvement for improving durability
- 5. Conclusions



## 1. Role of concrete surface: Beauty of Nature

- Decoration
- New functions
  - ✓ Green buildings
  - ✓ Anti-micro organism
  - ✓ Self-cleaning
  - ✓ Smog-easting
  - ✓ Green energy



CONCRETE

CONVENTION

## 1. Role of concrete surface: protection

#### **Deterioration happen from the surface**

☐ Cracking ☐ Acid rain

☐ Carbonization ☐ Decolorization

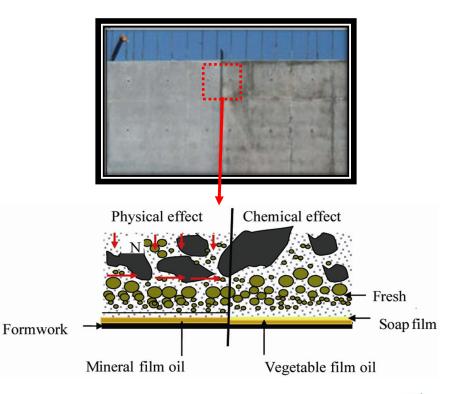
☐ Sulphate attack ☐ Chloride Ingression

Surface treatment are the most using way for enhancing durability. But have also 1) required extra time, 2) extra money required. (Cheng, 2020)



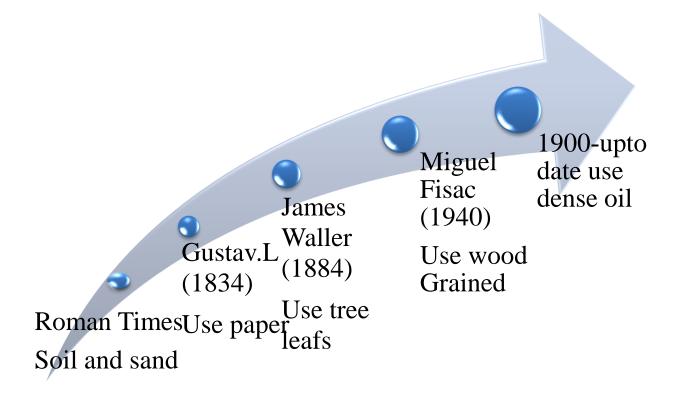
## How to create a good and durable surface?




#### Table of content

- 1. Role of concrete surface and releasing agent
- 2. Nano-engineered Releasing Agent (nERA)
- 3. nERA on cement hydration and hardening properties
- 4. On surface quality improvement for improving durability
- 5. Conclusions




## Effects of Releasing agent on concrete surface quality

- ✓ Releasing agents could prolong the life of formwork. (waterproof, corrosion resistance, easily detachment)
- ✓ <u>Vegetable oil</u> based releasing agent with wood formwork,
- ✓ <u>Mineral oil</u> based releasing agent with steel formwork can get good surface.
- ✓ Water based releasing agent can get more bugs hole as compared to mineral oil.



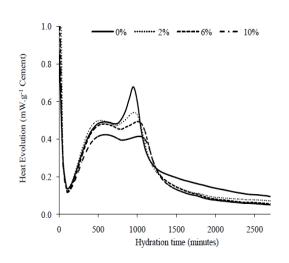
Releasing agents can prevent materials from sticking to the mold surface.

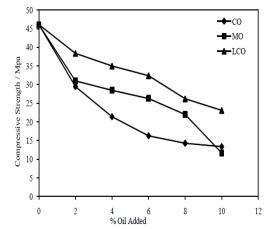
#### **Development history of Releasing agent**

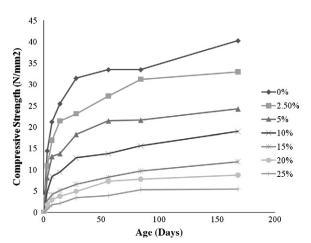




## **Effects of Releasing agent on concrete surface quality**


#### Advantages of releasing agents


- Good quality of surface
- Smooth surface
- Easily cleaning
- Labour cost
- Decorative surface
- ...




## **Retardation on cement hydration**

- Effect C<sub>3</sub>A Hydration, C<sub>3</sub>S Hydration
- Prevent cement particles from hydration







Magdi H. Almabrok, AJER, vol.8, no.05, 2019, pp.81-89



Wasiu O. Ajagbe, doi:10.1016/j.conbuildmat.2011.06.028

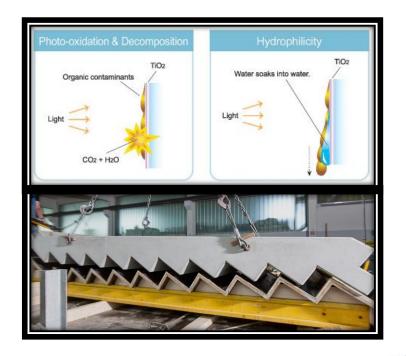
Nano-engineering of releasing agent...





## Motivation: Why nano-engineered releasing agent?

#### Using of releasing agent


- Sticky on the surface of mold (viscosity)
- Create hydrophobic or hydrophilic surface of mold and concrete
- Provide pathway for nano-particles

#### Advantages of nano-technology

Nano-silica pozzolanic material

$$SiO_2 + Ca(OH)_2 + H_2O \longrightarrow C-S-H_{(gel)}$$

Nano-TiO<sub>2</sub> self cleaning properties, filing effect





#### Preparation of nano-engineered releasing agent

#### Graphical design of preparation nERa

## Raw Materials for (nERa)

- Releasing agent
- Nano-TiO<sub>2</sub>
- Nano-SiO<sub>2</sub>

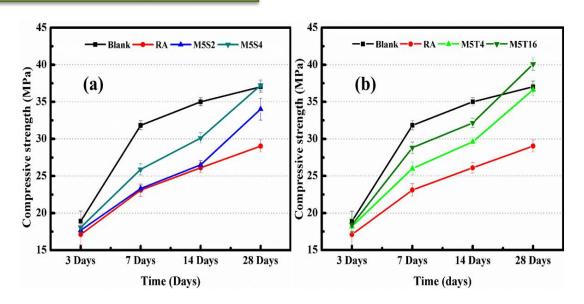


Mix proportion of nano-SiO<sub>2</sub>, nano-TiO<sub>2</sub> and RA for neRA preparation.

| Sample ID | RA (g) | Nanoparticle (g)          | Nanoparticle wt % of RA   |
|-----------|--------|---------------------------|---------------------------|
| RA        | 100 g  | 0                         | 0%                        |
| M5T4      | 96 g   | 4 g nano-TiO <sub>2</sub> | 4% nano-TiO <sub>2</sub>  |
| M5T16     | 84 g   | 16 g nano-TiO₂            | 16% nano-TiO <sub>2</sub> |
| M5S2      | 98 g   | 2 g nano-SiO <sub>2</sub> | 2% nano-SiO <sub>2</sub>  |
| M5S4      | 96 g   | 4 g nano-SiO <sub>2</sub> | 4% nano-SiO <sub>2</sub>  |



#### Table of content

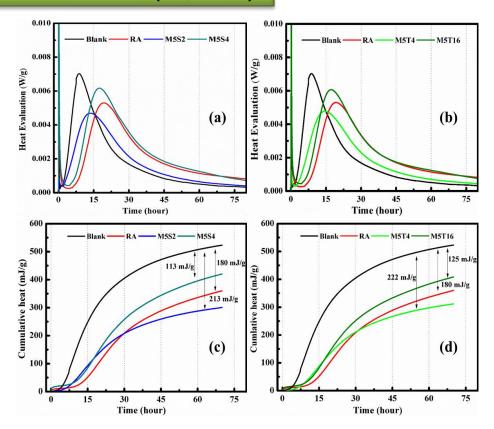

- 1. Role of concrete surface and releasing agent
- 2. Nano-engineered Releasing Agent (nERA)
- 3. nERA on cement hydration and hardening properties
- 4. On surface quality improvement for improving durability
- 5. Conclusions



## Addition of nERA on strength development

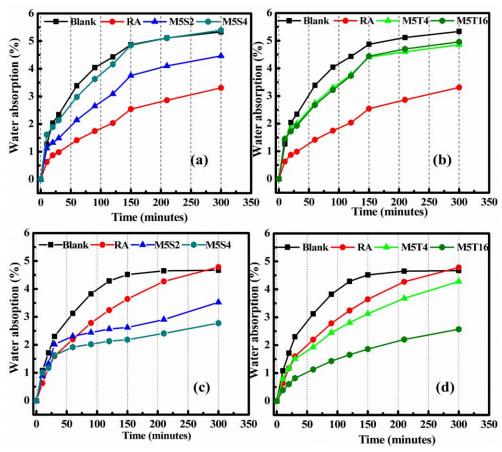
#### Compressive strength with and without (Ra, nERa)

Ra decrease the early age strength 27.4% due to prevent early hydration




Compressive strength after 3-, 7-, 14- and 28-days of curing age of (a) NS (nERa) (b) NT (nERa) cement mortar samples.

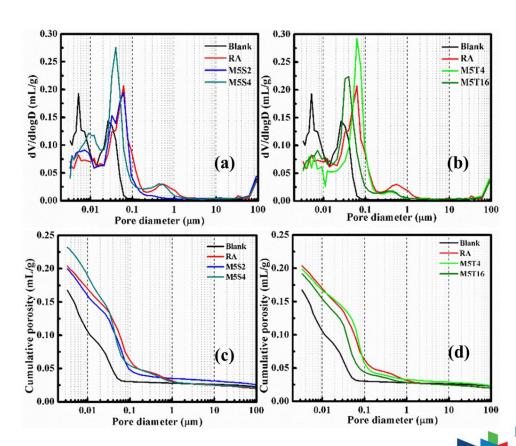



## Addition of nERA on hydration heat

#### Heat of hydration with and without (Ra, nERa)



Thermal calorimetry results of (a,c) NS (nERa) samples (b,d) NT (nERa) samples.


## Addition of nERA on water absorption



Water absorption rate % (a) NS sample after 7-days (b) NT sample after 7-days, (c) NS sample after 28-days (d) NT sample after 28-days.

## Addition of nERA on pore size distribution

- Increase the NS and NT dosage decrease threshold pore diameter
- The addition of NS in RA, can decrease the number of larger pores and also reduce the detrimental pores size which convert to harmless pores
- NT decreases the size of pores in the range of 0.1–1 µm due to filling the larger pores size and refining the sample's microstructure



Mercury intrusion porosimetry curves for (**a**, **c**) NS and NT (**b**, **d**) cement paste samples.



#### Table of content

- 1. Role of concrete surface and releasing agent
- 2. Nano-engineered Releasing Agent (nERA)
- 3. nERA on cement hydration and hardening properties
- 4. On surface quality improvement for improving durability
- 5. Conclusions



#### Modified cement concrete surface by nano-engineered releasing agent













nERA concrete



#### Surface porosity analysis by MIP

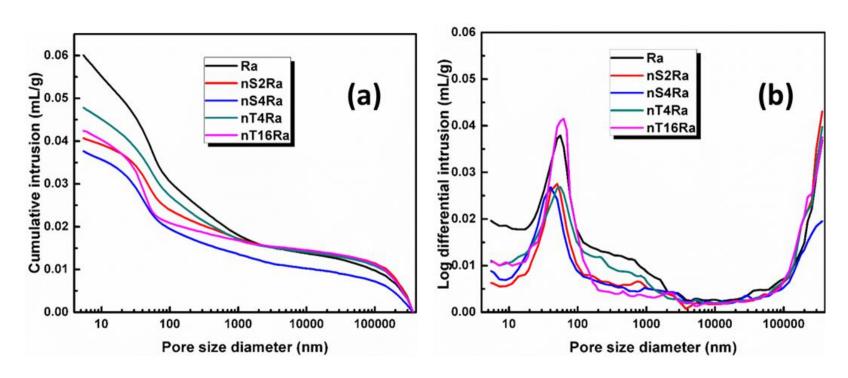
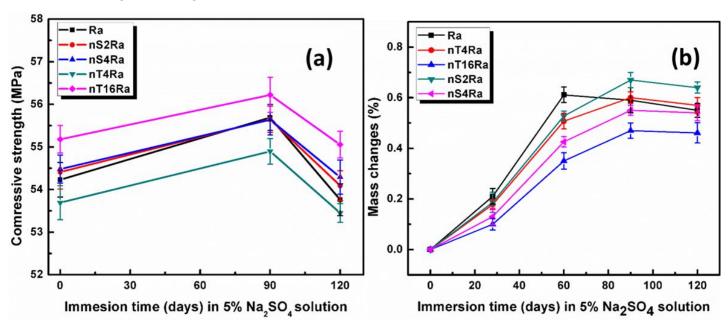
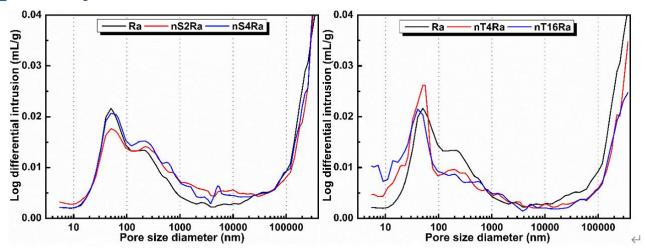




Fig.3 MIP results of cement mortar samples after 28 days of curing age



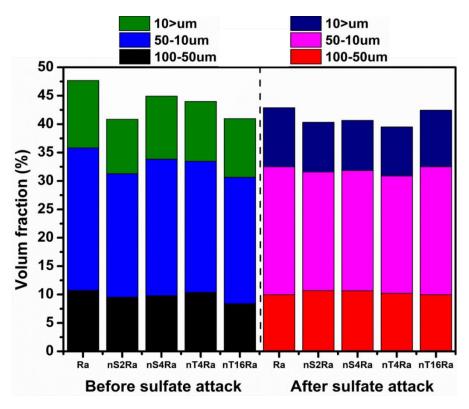

## Sulfate resistivity analysis



Weight and strength changes after 120 days in Na<sub>2</sub>SO<sub>4</sub> solution

| After 120 days    | Ra   | nS2Ra | nS4Ra | nT4Ra | nT16Ra |
|-------------------|------|-------|-------|-------|--------|
| Mass loss (%)     | 0.55 | 0.57  | 0.461 | 0.64  | 0.54   |
| Strength loss (%) | 0.87 | 0.59  | 0.34  | 0.46  | 0.23   |

#### **Surface porosity after sulfate attack**

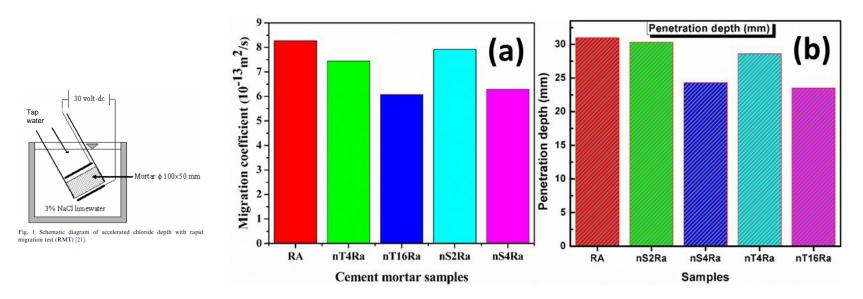



MIP results of 28 days of curing age mortar samples (after immersion in 5% Na<sub>2</sub>SO<sub>4</sub> solution)

Total porosity % (before and after) sulfate attack

| Samples       | Ra    | nS2Ra | nS4Ra | nT4Ra | nT16Ra |
|---------------|-------|-------|-------|-------|--------|
| Before        | 11.85 | 10.16 | 9.5   | 10.82 | 9.61   |
| After 90 days | 10.64 | 9.21  | 8.67  | 9.76  | 8.76   |
| Changes %     | 10.21 | 9.3   | 8.73  | 9.79  | 8.84   |

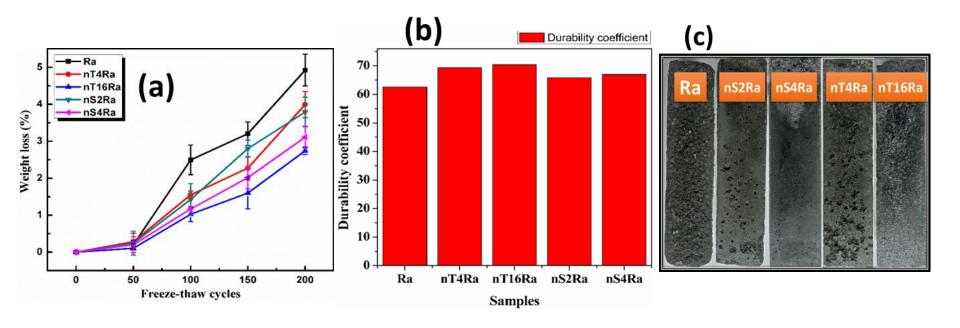
#### **Surface porosity after sulfate attack**




After the sulfate environment the samples shows lower porosity due to formation of expansive product



#### Rapid chloride penetrability test (RCPT)


The curing age of samples were 28 days (ASTM C1202)



- > The nERa modified sample shows best resistivity against chloride penetrability.
- The migration coefficient of nS2Ra and nT16Ra 23.6%, 26.6% compared to RA.



#### Freeze-thaw cycle results (F/T cycles)



➤ The total number of F/T cycle was 200 and every cycle duration was 4 hours.



#### Table of content

- 1. Role of concrete surface and releasing agent
- 2. Nano-engineered Releasing Agent (nERA)
- 3. nERA on cement hydration and hardening properties
- 4. On surface quality improvement for improving durability
- 5. Conclusions



#### **Conclusions**

- ✓ Counterbalance of the adverse side effects of releasing agent on the properties of cementitious materials with nano-particles
- ✓ Economical and efficient improvement of concrete durability through surface modification with nano-engineered releasing agents

- 1. F. Muhammad, et al., Cem. Concr. Compos. 125 (2022) 104300
- 2. F. Muhammad, et al., Constr. Build Mater, under review





pkhou@163.com

