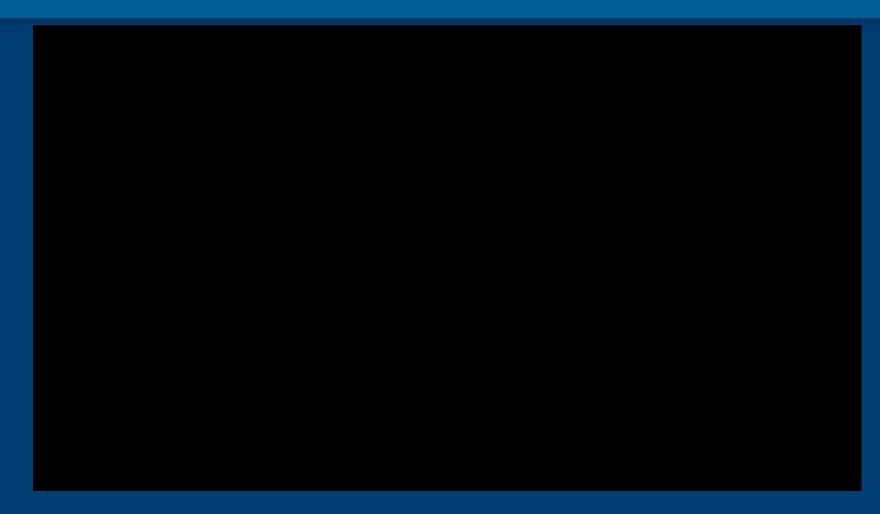


Real World Considerations & Project Highlights

Presented by Josh Hanje Product Specialist, TUF-N-LITE



Real World Considerations & Project Highlights: Outline

- GFRP from the Contractor's Perspective
- Constructability & Best Practices
- Value Engineering Process
- Project Highlight

Real World Considerations & Project Highlights: Outline

Constructability & Best Practices (Cutting & Bending)

- Field Bending is not possible with GFRP Rebar.
- Field Forming of large radius curves is possible with GFRP Rebar.
- Cut GFRP with Diamond Blade (DO NOT Shear GFRP Rebar!).

Constructability & Best Practices (Bent Bars)

Straight Portion of Bent Bars

Bent Portion of Bars

Bent Bars must be pre-formed in the factory according to the project's plans.
KEY CONSIDERATION: Performance varies from manufacturer to manufacturer; this affects how you will Design

& Specify.

QC/QA currently qualifies Bent Bars at bent and straight portions.

aci

American Concrete Institute

Constructability & Best Practices (Tying & Installation)

- Steel ties and supports are acceptable unless otherwise specified by the plans.
- Non-ferrous rebar ties & supports available.
- GFRP Rebar is typically 25% the weight of steel, so floating may occur in high-slump concrete or during concrete vibration. Rebar ties/fasteners must be used in areas of concern.

Constructability & Best Practices (Concrete Cover)

Authoritative guidance on Concrete Cover available through **ACI 440.5** (Table 3.1) & **AASHTO LRFD-GFRP** (Table 6.6.2.4-1).

Table 6.6.2.4-1—Concrete Cover Requirements for GFRPReinforcing Bars

-	
Description	Specified Cover
Slabs	
Top and bottom reinforcement for	1.0 or 1.5 bar
No. 10 GFRP reinforcing bars	diameters
and smaller	
Beams, formed	
Stirrups	1.5 in.
Principal reinforcement	2.0 in.

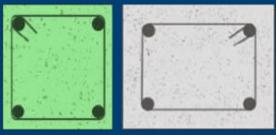
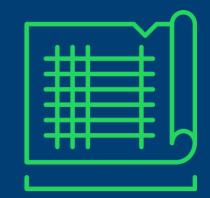


Table 3.1—Concrete cover requirements for FRP reinforcement

	Specified cover, in.	
Slabs and joists		
Top and bottom bars		
No. 10 bars and smaller	3/4	
Formed concrete surfaces exposed to earth and for bottoms bearing on work mat, or slabs supporting earth cover		
No. 5 bars and smaller	1-1/2	
No. 6 through 10 bars	2	
Beams, formed		
Stirrups, spirals, and ties	1-1/2	
Primary reinforcement	2	
Exposed to earth		
Stirrups and ties	2	
Primary reinforcement	2-1/2	
Walls		
No. 10 bars and smaller	3/4	
Formed concrete surfaces exposed to earth or in contact with ground	2	
Footings and base slabs		
At formed surfaces and bottoms bearing on concrete work mat	2	
At unformed surfaces and bottoms in contact with earth	3	
Top of footings	Same as slabs	
Over top of piles	2	



American Concrete Institute

Value Engineering Process

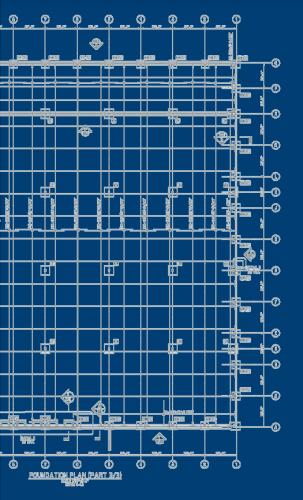
COMMUNICATION & PLANNING

- Know Contractor's timeline.
- Know the project's submittal/approval process.

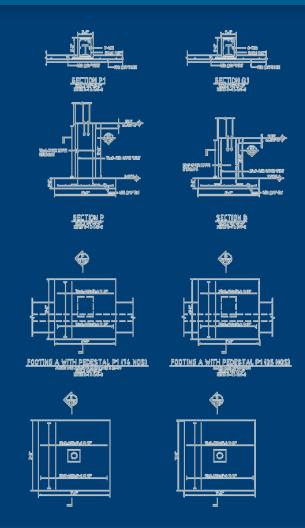
STRUCTURAL DRAWINGS

Acquire structural drawings, project plans, loading info, any additional data.

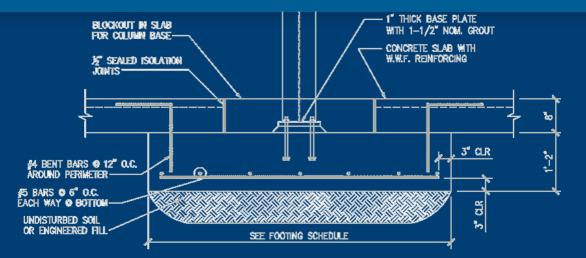
RED LINE MARKS & ESTIMATION


 Other deliverables could include Stamps, Placing Docs, Updated CAD Drawings, Estimation.

START TO FINISH SUPPORT


Provide support &
education: Contractor,
EOR, Local Building
Officials, Structure
Owners.

Project Highlight: Commercial Warehouse



- 300,000 sqft Commercial Warehouse.
- Steel-RC design utilized rebar sizes #3, #4, #5, & #6.
- Value Engineering was driven by the Contractor, who promoted the idea to the EOR and Owner.
- Lunch & Learn with EOR.
- VE provided a High Modulus GFRP-RC design.

Project Highlight: Commercial Warehouse (cont.)

- All steel rebar was replaced by a single sized AC454-approved bar (ESR-4664) meeting High Modulus criteria.
- **11,127 lbs** of GFRP rebar (pickup truck & trailer) replaced **79,194 lbs** of steel rebar (two truckloads).
- Contractor saved **19%** compared to steel package.

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org

