

# REAL TIME PLASTIC VISCOSITY PREDICTION THROUGH VIDEO RECOGNITION

### Presenter: Pengwei Guo (Ph.D. candidate) Ph.D. advisor: Dr. Weina Meng

Stevens Institute of Technology Department of Civil, Environmental and Ocean Engineering Advanced Concrete Technology (ACT) Lab

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

# Outline

- □ Why monitor plastic viscosity of concrete
- □ Case study of plastic viscosity assessment via video
  - Mixture design
  - Mixing procedure
  - Experimental results
  - Training ad testing results of deep learning.
- Conclusions

# □ Why monitor plastic viscosity of concrete?

- Plastic viscosity influence properties of concrete.
  - ✓ Workability
  - ✓ Pumpability
  - ✓ Extrudability
  - ✓ Fiber distribution
  - ✓ Aggregate segregation

- ✓ Productivity
- ✓ Quality
- ✓ Mechanical properties
- Durability



Aggregate Segregation of SCC



Non-buildable 3D printing Fabian B Rodriguez (2022)



Fiber segregation

## □ Plastic viscosity influences 3D printed concrete

- Plastic viscosity influence the stability of 3D printed concrete.
  - ✓ Low viscosity low buildability
  - ✓ High viscosity low extrudability (hard to be pumped)
  - ✓ Optimum plastic viscosity is requirement.



Low viscosity

Optimum viscosity

#### **Reference:**

[1] Weng, Y., Lu, B., Li, M., Liu, Z., Tan, M.J. and Qian, S., 2018. Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Construction and Building Materials, 189, pp.676-685.

# Plastic viscosity influences fiber distribution

- Low plastic viscosity
  - ✓ Fiber segregation
  - ✓ Bad fiber orientation
  - ✓ Large crack opening

- Proper plastic viscosity
  - ✓ Uniformly-dispersed fibers
  - ✓ Well-oriented fiber
  - ✓ More chance to bridge cracks



# Effect of plastic viscosity on flexural properties

Control plastic viscosity to optimize flexural properties



#### Reference:

[1] Meng, W. and Khayat, K.H., 2017. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Composites Part B: Engineering, 117, pp.26-34.

# Equipment test plastic viscosity

- Rheometer/viscometer test plastic viscosity
- Limitations:
  - ✓ Time consuming (20~30 mins).
  - ✓ High cost.
  - $\checkmark$  Most of them are not applicable for field application.







ICAR Rheometer [2]

#### Reference:

[1] Meng, W. and Khayat, K.H., 2017. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Composites Part B: Engineering, 117, pp.26-34.

[2] https://www.germann.org/TestSystems/ICAR%20Rheometer/ICAR%20Rheometer.pdf.

# Simplified method to test plastic viscosity

- Flow time method [1].
  - $\checkmark$  Plastic viscosity has strong linear relationship with flow time of mortar.
  - $\checkmark$  Flow time method is more applicable for field applications.
  - ✓ Limitation:
    - $\circ$   $\,$  Interfere the concrete mixing process.



#### Reference:

[1] Meng, W. and Khayat, K.H., 2017. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Composites Part B: Engineering, 117, pp.26-34.

# Goal

- This study aims to propose a method for the in-situ assessment plastic viscosity of UHPC:
  - ✓ In real-time

- $\checkmark\,$  Not interfere the concrete mixing
- ✓ Automatically
- ✓ Cost-effective
- ✓ More feasible for actual application



# Case study of plastic viscosity assessment by videos

• Experimental tests

- Experimental Results
- Training and testing of LRCN
   Application of LRCN



# □ Mix design

- Assessed plastic viscosity of ultra-high-performance concrete (UHPC) suspending mortar before adding fibers.
- 5 UHPC mixtures were investigated
- VMA dosage was varied to obtain different plastic viscosity.

|         |        | 0     | <u> </u> |       |       | 0    |      |       |
|---------|--------|-------|----------|-------|-------|------|------|-------|
| Mixture | Cement | Slag  | LWS      | MS    | RS    | HRWR | VMA  | Water |
| VMA0    | 459.0  | 633.9 | 163.9    | 287.4 | 432.8 | 7.0  | 0    | 246.1 |
| VMA0.5  | 459.0  | 633.9 | 163.9    | 287.4 | 432.8 | 7.0  | 5.5  | 240.9 |
| VMA1.0  | 459.0  | 633.9 | 163.9    | 287.4 | 432.8 | 7.0  | 10.9 | 235.7 |
| VMA1.5  | 459.0  | 633.9 | 163.9    | 287.4 | 432.8 | 7.0  | 16.4 | 230.5 |
| VMA2.0  | 459.0  | 633.9 | 163.9    | 287.4 | 432.8 | 7.0  | 21.9 | 225.3 |

Table 1. Ingredient proportioning of the investigated mixtures

Notes: LWS: lightweight sand; MS: masonry sand; RS: river sand; HRWR: high range water reducer; VMA: viscosity modifying agent.

# Taking video during mixing

- Mixing procedure:
  - $\checkmark$  Dry mixing 3 mins
  - ✓ Add 90% water and HRWR-3 mins
  - ✓ Rest of 10% water and HRWR -2 mins 30 s
  - Videos were taken (30 s) and plastic viscosity was measured after the mortar was homogenous
  - ✓ Add fibers 2 mins



# Experimentally establish the relationship between Flow time and plastic viscosity

- Plastic viscosity of mortar ICAR rheometer
- Strong correlation between flow time and plastic viscosity



# □ Flexural performance

### Flexural behavior

- ✓ VMA dosage from 0 to 1%:
  - Maximum bending load: increase
  - Flexural strength: increase
  - Dissipated energy: increase

- $\checkmark$  VMA dosage from 1 to 2%:
  - $\circ~$  Maximum bending load: decrease
  - o Flexural strength: decrease
  - $\circ$  Dissipated energy: decrease



### Experimental results on fiber activity and air voids

- Fiber behaviors and hardened air voids:
  - ✓ VMA dosage from 0 to 1%:
    - Fiber dispersion: increase
    - Fiber orientation: increase
    - Fiber distribution: increase
    - Air voids: increase

- $\checkmark$  VMA dosage from 1 to 2%:
  - $\circ~$  Fiber dispersion: increase
  - $\circ$  Fiber orientation: decrease
  - $\circ$  Fiber distribution: decrease
  - o Air voids: increase



### Determine the ranges of plastic viscosity

- Range of plastic viscosity
  - ✓ Flexural strength 5 groups
  - ✓ Different flexural strength intervals plastic viscosity range



**Table 3.** Determination of the ranges of plastic viscosity

| Class                    | Range 1 | Range 2 | Range 3 | Range 4 | Range 5 |
|--------------------------|---------|---------|---------|---------|---------|
| Plastic viscosity (Pa⋅s) | 10-24   | 25-34   | 35-72   | 73-83   | 84-106  |
| Designation              | 1       | 2       | 3       | 4       | 5       |

# Deep learning for plastic viscosity prediction

- Long-term recurrent convolutional network (LRCN) is proposed to estimate the plastic viscosity.
  - ✓ Input: video during mixing.
  - ✓ Output: plastic viscosity.



# Data Preprocessing

• Video is converted into a series of image to train LRCN.



# Output format of plastic viscosity for deep Learning algorithm

 The viscosity range are converted into one-hot code to be identified by deep learning method. The plastic viscosity range after one-hot encoding is used as output of LRCN.



### Data description and training results

- In this study, a total of 78 videos were captured and used to generate 2340 data samples.
- The dataset is divided into 80% of training and 20% of validation data.
- The model is converged, and the validation accuracy is up to 1.



# □ Testing results

| Sequence images (5 images) | Pre       | Actual          |         |
|----------------------------|-----------|-----------------|---------|
|                            | Encode    | (1, 0, 0, 0, 0) |         |
|                            | Class     | 0               |         |
|                            | Viscosity | 10-24 Pa·s      | 17 Pa∙s |
|                            | Encode    | (0, 0, 0, 0, 1) |         |
|                            | Class     | 4               |         |
| VAN VIN                    | Viscosity | 84-106 Pa·s     | 98 Pa∙s |
|                            | Encode    | (0, 0, 0, 1, 0) |         |
|                            | Class     | 3               |         |
|                            | Viscosity | 73-83 Pa·s      | 80 Pa·s |
|                            | Encode    | (0, 1, 0, 0, 0) |         |
|                            | Class     | 1               |         |
| Celle Alle                 | Viscosity | 25-34 Pa·s      | 33 Pa·s |
|                            | Encode    | (0, 0, 1, 0, 0) |         |
|                            | Class     | 2               |         |
|                            | Viscosity | 35-72 Pa·s      | 54 Pa∙s |

| Predicted value          | (1,0,0,0,0) | (0,0,0,0,1) | (0,0,0,1,0) | (0,1,0,0,0) | (0,0,1,0,0) |
|--------------------------|-------------|-------------|-------------|-------------|-------------|
| Designation              | 0           | 4           | 3           | 1           | 2           |
| Plastic viscosity (Pa-s) | 10-24       | 84-106      | 73-83       | 25-34       | 35-72       |
| Measured (Pa·s)          | 17          | 98          | 80          | 33          | 54          |

# □ Conclusions

- 1. The accuracy of the trained LRCN model for assessing the plastic viscosity of UHPC suspending mortar was higher than 0.990.
- 2. With a common laptop configuration, the assessment time for the plastic viscosity was shorter than 1 s, enabling real-time assessment of in-site viscosity.

| Method                          | Time      | Human action               |
|---------------------------------|-----------|----------------------------|
| Measurement using rheometer     | 10-30 min | Need manual operation      |
| Measurement using mini V-funnel | 10 min    | Need manual operation      |
| The proposed method             | < 1 s     | Without human intervention |

# □ Acknowledgment

This research was funded by National Science Foundation (award number: CMMI-2046407) and Stevens Institute of Technology. and New Jersey Department of Transportation: Task Order 388 – Bridge Resource Program (2021-2022), contract ID number: 21-50862. The authors also would like to thank Mr. Bill Kulish (the president of Steelike Inc) for the donation of steel fibers.

# Advanced Concrete Technology (ACT) Lab

• The ACT lab in Stevens is capable of fabricating, testing, and characterizing concrete materials and structures.





# Limitations

 Limitation: due to limited dataset, the proposed work can only predict the plastic viscosity range, rather than a accurate value.



- This research only employs one type of mixer for mixtures.
  - ✓ Different mixing kinetic
  - $\checkmark$  Different flow state of mixture during mixing.

# □ Image analysis for fiber dispersion and orientation

• Binary images of the cross sections of beam specimens









VMA-1.0

6

# Fiber orientation coefficient (η):

 $\eta = 1$ , fibers aligned perpendicular to cross section

# Fiber dispersion coefficient (α):

 $\alpha = 1$ , fibers uniformly dispersed

$$\theta = \arccos(\frac{D}{L})$$

$$\eta = \int_{\theta_{min}}^{\theta_{max}} p(\theta) \cos^2\theta \, d\theta$$

$$\alpha = \exp\left[-\frac{1}{x_0}\sqrt{\frac{\sum(x_i - x_0)^2}{n}}\right]$$