Use of steel microfibers, steel macrofibers, PVA fibers, and hybrid fibers in UHPC: Experience from shear tests and bond strength tests of UHPC beams

Manuel Bermudez Mpendulo Dlamini Chung-Chan Hung

Ph.D. Candidate MSc. Professor

國立成功力學

National Cheng Kung University

American Concrete Institute

MARCH 27-31, 2022

Caribe Royale Orlando, Orlando, FL

 The presence of fibers disturbs UHPC's microstructure
 Distribution of the steel microfibers is statistically more uniform when compared to other types of fibers.

=> In the last three decades, UHPC structural members have been mainly reinforced with steel microfibers.

 ACI Committee 544 considers the fiber diameter of 0.3 mm as the separating limit between microfibers and macrofibers.

Microfibers

<u>Macrofibers</u>

Mixing UHPC with steel microfibers

Mixing UHPC with steel microfibers

Steel microfibers

- Uniform distribution of the fibers
- Slump > than 60 cm
- $f'_c = 120~160$ MPa when $V_f \ge 0.75\%$

Mixing UHPC reinforced with different types of fibers

Double hooked end macrofibers

Fiber balling

Mixing UHPC reinforced with different types of fibers

Hooked end steel macrofibers

PVA fibers

UHPC reinforced with $V_f = 2.25\%$ LF

After adjusting the SP content

Slump = 35 ~ 40 cm

Good workability

UHPC reinforced with $V_f = 2.25\%$ PVA

Slump = 40 ~ 45 cm

UHPC reinforced with $V_f = 0.75\%$ SF + 0.75%LF

Reduction in the slump (25 ~ 30 cm)

UHPC reinforced with $V_f = 0.75\%$ SF + 1.50LF

Slump 35 ~ 40 cm

UHPC reinforced with $V_f = 1.50\%$ SF + 0.75%LF

Slump 40 ~ 45 cm

American Concrete Institute

Good workability

UHPC reinforced with $V_f = 0.75\%$ SF +

Experience on Shear tests of UHPC beams

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Shear Resisting Mechanisms of beams without stirrups

Effective net of fiber reinforcement

UHPC beams with (a/d = 1.5)

UHPC beams with hybrid fibers

UHPC beams with (a/d = 3.3)

Slender UHPC beam with 0.75%SF+1.50%LF

aci

Can we use other types of fibers as shear reinforcement?

Experience in bond strength and splicing length of rebars in UHPC

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

- The development of reinforcement stipulated by ACI 318 (2019) in section 25.4 has an upper limit of compressive strength up to 70 MPa.
- This limit is too conservative when considering the outstanding mechanical properties exhibited by UHPC.

$$l_{d,318-19} = \left(\frac{f_y}{1.1\lambda\sqrt{f_c'}}\frac{\psi_t\psi_e\psi_s\psi_g}{(\frac{c_b+k_{tr}}{d_b})}\right)d_b$$

Development length (ACI 318-2019)

$$a_{318-19} = \frac{A_b f_s}{\pi d_b (1.3l_s)} = \frac{\frac{\pi d_b^2}{4} f_s}{\pi d_b 1.3 \left(\frac{f_s}{1.1\lambda \sqrt{f_c'}} \frac{\psi_t \psi_e \psi_s \psi_g}{\left(\frac{c_b + k_{tr}}{d_b}\right)} \right) d_b} = \frac{\lambda (\frac{c_b + k_{tr}}{d_b})}{4.68 \psi_t \psi_e \psi_s \psi_g} \sqrt{f_c'}$$
Bond strength
(ACL 318-2019)

 f'_c limited to 70 MPa

High Strength Steel Reinforcing Bars

Bar type	Nominal area (mm²)	Depth of each rib h_r (mm)	Width of each rib w _r (mm)	Spacing between ribs <i>S_r</i> (mm)	Area of ribs A _r (mm²)	Relative area of ribs <i>R_r</i>
#5(D16) SD785	198.5	0.72	2.7	6.5	32	0.096
#8(D25) SD685	490.7	2	3	10	148	0.184

Bar Type	Yield Strength (MPa)	Ultimate Strength (MPa)	
	800	993	
SD785-#5(D16)	840	1025	
	821	1022	
Average	820	1013	
Average	820 702	1013 901	
Average SD685-#8(D25)	820 702 707	1013 901 902	
Average SD685-#8(D25)	820 702 707 710	1013 901 902 905	

UHPC reinforced with 2% of steel microfiber

- In some lap-splice beams, we failed to allow the UHPC beams to fail in bond failure because the very high bond strength of UHPC: UHPC beams with either bar #5(D16) or #8(D25) had only flexural cracks with no splitting cracks and tension reinforcement yielding before failure.
- The superior performance of UHPC can also represent an obstacle in trying to investigate the design parameters such as the bond strength and shear strength.
- It was found that in UHPC beam tests that had the splice length of only 40% of the required length per ACI 318 for normal concrete, flexural capacity developed by the reinforcing bars prevented bond failure.

Thank you!

This study was sponsored in part by the Ministry of Science and Technology, Taiwan, under Grant

lo. 104-2628-E-006-002-MY3.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE