Solidification Behavior of BCSA Cement

Abigail Kienzle & Robert J. Thomas Clarkson University Potsdam, NY, USA

Belitic Calcium Sulfoaluminate (BCSA) Cement

Scanning electron micrograph of BCSA showing ettringite formation after 4 hours of hydration

	BCSA	Portland cement
	(% by mass)	
Belite (C ₂ S)	30-60	15-30
Calcium sulfoaluminate $(C_4A_3\overline{S})$	20-30	-
Calcium sulfate (CS)	5-25	2-8
Ferrite (C ₄ AF)	<10	5-15
Alite (C ₃ S)	-	50-70
Aluminate (C_3A)	-	5-10

CONVENTION

Benefits of BCSA

- Use as a repair material
- Environmental benefits
- Low-carbon cement for use in construction
- Potential to accelerate construction with controllable setting time

Objectives

Understand the influence of mixture parameters on setting time of BCSA cement:

- Water/cement ratio
- Citric acid retarder dosage

Correlate different measurements of setting and solidification in BCSA cement:

- Vicat penetration
- Ultrasonic monitoring
- Isothermal calorimetry

Methodology

Vicat Test (ASTM C191)

• Establish initial and final setting times

Ultrasonic Monitoring

• Data collected on velocity and acceleration of setting cement paste

(aci) CONCRETE

Vicat Penetration Results

Effect of Citric Acid and Water/Cement Ratio

Effect of Water/Cement Ratio

Effect of Citric Acid Retarder

Setting Time Models

 $t_{initial} = -72 + 35(\% CA) + 543(w/cm) + 216(\% CA)(w/cm) - 592(w/cm)^{2}$

 $R^2 = 0.87$

$$t_{final} = 98 + 35(\% CA) - 11(w/cm) + 237(\% CA)(w/cm) - 125(w/cm)^{2}$$

$$R^2 = 0.83$$

CONVENTION

Setting Time Models

Ultrasonic Monitoring

Ultrasonic Monitoring Curve

Future Steps

Isothermal Calorimetry

• Observe heat of hydration reaction and identify correlation with other results

(aci) CONCRETE CONVENTION

Thank You

Abigail Kienzle Undergraduate Research Assistant Clarkson University kienzlai@clarkson.edu

Robert J. Thomas, Ph.D Assistant Professor Clarkson University rthomas@clarkson.edu

This research was supported in part by the CTS Cement Manufacturing Corporation

