

Anchorage of Large High-Strength Headed Reinforcing Bars

Ali Banaeipour

March 30, 2021

Presentation Outline

Development Length and Dimensional Restriction

Standard Hooked Bars

Use hooked bars (180 and 90 degrees)

Problem with Hooked Bars

Source: https://www.sefindia.org/forum/files/beam_column_joint_2_321.jpg

Headed Bars

• Why headed bars?

Hooked Bars Vs. Headed Bars

Headed Bars

ACI 318-14: Hooked Bars

ACI 318-14: Headed Bars

Previous KU Studies: Scope

Previous KU Studies

• 2012 to 2016:300 Hooked bar and 202 Headed bar Simulated Beam-Column Joint Specimens

- Hooked and headed bars behave a lot alike
- For the same embedment length, headed bars provide a higher anchorage force than hooked bars
- Closely spaced hooked and headed bars are weaker, individually, than widely spaced hooked and headed bars
- Hooked bars with 90° and 180° degree bends have similar anchorage strengths

KU Study Findings

- ACI 318-14 provisions overestimate contribution of concrete strength to anchorage strength with $\sqrt{f_c'}$ term; it can be better represented by $f_c'^{0.25}$
- Confining reinforcement increases anchorage strength of hooked and headed bars
- Descriptive equations for anchorage of hooked and headed bars based on tests on No. 5, No. 8, and No. 11 bars

ACI 318-19 – Development Length

Hooks
$$\ell_{dh} = \left(\frac{f_y \psi_e \psi_r \psi_o \psi_c}{55\lambda \sqrt{f_c'}}\right) d_b^{1.5}$$

Heads
$$\ell_{dt} = \left(\frac{f_y \psi_e \psi_p \psi_o \psi_c}{75\sqrt{f_c'}}\right) d_b^{1.5}$$

Current KU Study: Scope

Expand the available data on the anchorage strength of No. 14 and No. 18 hooked and headed bars

Use the experimental results to propose design criteria for No. 14 and No. 18 bars

Beam Column Joints: Specimen Design

- Simulated beam-column joints same as the previous studies and designed so the anchorage failure occurs in the joint region
- Key Variables
 - Embedment length
- Number and spacing of bars (widely and closely spaced)
 - Area of confining reinf. in the joint region
 - Bar size
 - Concrete strength: 5 to 15 ksi
 - Stress of test bars up to 150 ksi

Beam Column Joints: Testing Frame

Beam Column Joints: Testing Frame

- ≻No. 14 Bar Specimens
- Concrete strength: 5-13 ksi
- Bar stress: up to 150 ksi
- Bar spacing: 18 in. (widely-spaced)
- Embedment length: 22.7 to 35.8 in.
- Confining reinforcement: with and without

> No. 14 Headed Bar Specimens – Results

Specimen	<i>f′_c</i> (psi)	Confining Reinforcement	T/T _h
14-3	8510	Without	1.04
14-4	7700	With	1.00
14-15	6190	Without	1.07
14-16B	7500	With	0.85
14-16C	6470	With	0.91
		Average:	0.97

> No. 14 Hooked Bar Specimens – Results

Specimen	<i>f′_c</i> (psi)	Confining Reinforcement	T/T _h
H14-1	12980	Without	1.09
H14-2	13010	With	1.19
H14-3	8100	Without	1.05
H14-4	7570	With	0.91
		Average:	1.06

> No. 14 Bar Specimens – Failure Mode

> No. 14 Bar Specimens – Failure Mode

- Finish No. 14 hooked and headed bar tests with widely and closely spaced bars
- Design and fabricate No. 18 hooked and headed bar specimens

Summary

- The need for obtaining experimental data on large-diameter hooked and headed bars
- Current study on the anchorage strength of No. 14 and No. 18 bars and the results matching fairly close to previous tests
- The future plan for the ongoing study

Thank You!

