

Effect of Early-Age Cracking on Corrosion Initiation in Reinforced Concrete

March 27, 2018 ACI Spring 2018 Convention – Salt Lake City, UT

Matt O'Reilly Osama Al-Qassag Omid Farshadfar James Lafikes David Darwin

Sponsors

and Exposition

aci

Sponsors

aci 🕽

Outline

Research Background

- Laboratory Testing
- Results and Discussion

Summary

Significance of Study

- Bridge Deck Cracking
 - Allows a direct path for corrosive materials
 - Compromised protection of reinforcing steel
 - Accelerates freeze-thaw damage / additional cracking

CALC The Typical Cracked Concrete Bridge Deck

- Rough cracks, randomly oriented
- Typically < 10 mils
 (0.25 mm) in width
- Can be constant width or taper
- Initiation time varies, though often occurs early

The Typical Cracked Corrosion Test Specimen

 Smooth cracks from steel shims

(aci)

- Typically > 10 mils (0.25 mm) in width
- Constant width
- With conventional reinforcement, corrosion initiates immediately

The First Question...

What effect do these cracks have on the service life of concrete?

The Second Question... Does the "steel shim" crack accurately model cracking in concrete?

Can we ignore 'small' cracks in concrete?

or

When is a crack really a crack?

Cracking and Chloride Transport

- Rodriguez and Hooton (2003) examined chloride transport through cracks made in concrete cylinders.
 - Smooth-cut in half
 - Rough-split w/ hydraulic press
- Shimmed cylinder pieces to form cracks from 3 to 27 mils (0.08 to 0.68 mm)
- Chloride transport occurred at the same rate regardless of crack size or roughness

The Counter-Argument

Cracks didn't taper

 Many cracks become narrower below the surface and don't reach the reinforcement

 Not all structures see corrosion immediately, even with cracking

The Counter-Argument:

- Settlement
- Plastic Shrinkage
- Rapid Evaporation
- Autogenous Shrinkage
- Thermal Effects
- Moisture Differential
- Loading (flexure, tension, shear)
- People putting steel shims in your concrete

aci

Settlement Cracking Test Specimen

- Developed at KU
- Dimensions: 12 in. (305 mm) square
- Depth: 8 in. (203 mm)
- No. 6 (No. 19) Bars
- Top Bar Cover: 1 in. (25.4 mm)
- Cured 24 hours:

50±5% humidity, 73±3°F (21-24°C) temperature

(aci)

Test Specimen

aci

Comparison Specimens

Un-cracked:

Cracked with shim:

Mixture Proportions

w/cm = 0.45

(aci)

- Air Content Range: 6.5 9.5%
- 27% paste content
 - 100% portland cement
 - 30% slag cement (by volume)
 - 30% slag cement + 7 lb/cwt internal curing water via pre-wetted fine lightweight aggregate

Settlement Cracking Corrosion Specimens

- Sealed for first 24 hours
- Settlement cracks measured, recorded
- Wet cured for 2 more days, dry cured for 25 days

Test Procedures

- Specimens underwent alternate 12 week cycles:
 - Cycle 1: Ponding with 15% NaCl solution w/ weekly dry periods at 100°F
 - Cycle 2: Continuous ponding with NaCl (no dry period)

Results

Crack Size

aci

- Corrosion Initiation
- Corrosion Rate

Specimen Crack Data

Mixture	Variable	Range	Average
100% portland cement	Max. Crack Width (in.)	0.002-0.004	0.003
	Crack L <mark>ength</mark> (in.)	2.17-10.6*	7.5
30% Slag	Max. Cra <mark>ck Widt</mark> h (in.)	0.002-0.003	0.002
	Crack Length (in.)	2-4*	3.0
30% Slag + 7 lb/cwt IC Water	Max. Crack Width (in.)	0.001-0.003	0.002
	Crack Length (in.)	1.25-5.5*	2.5
Cracked Beam Corrosion Specimen	Max. Crack Width (in.)	0.012	
	Crack Length (in.)	6**	

*Sum of numerous small cracks **One continuous crack

Summary

- Even small (0.001 in. width) cracks result in early corrosion initiation and increased corrosion rate relative to un-cracked concrete
- Artificial 'steel shim' cracks do not accurately model these types of cracks

aci

Summary

- A wide variation in behavior was noted in settlement cracking specimens
 - 25% of specimens with 100% portland cement behaved similar to un-cracked concrete in terms of corrosion initiation
 - ALL specimens with 30% slag, including internal curing initiated at week 1 and behaved more similarly to cracked beam specimens

aci

Future Work

- Vary curing time with mixtures containing SCMs
- Attempt to vary crack width
- Specimens with greater cover over the bar
 - Closer to that of real-world structures
- Other crack reduction technologies

Questions?

James Lafikes, P.E.

Graduate Research Assistant CEAE Department 2142 Learned Hall 1530 W. 15th St. Lawrence, KS 66045 (314) 401-2911

lafikes@ku.edu

