








### ACI 212 Chemical Admixtures – New Innovations in Chemical Admixtures

# New Generation of High-Range Water Reducers

Presenter: Suzanne Lianopoulos Authors: Thomas Vickers & Suzanne Lianopoulos

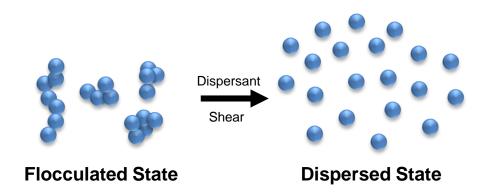


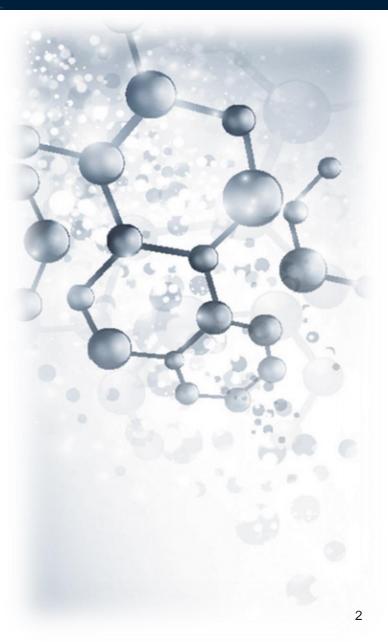




American Concrete Institute

Always advancing

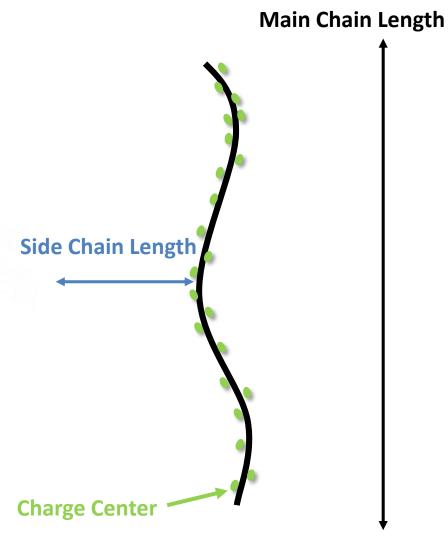

## The Concrete Convention and Exposition




## **New Generation HRWR's**

- New performance space still possible decades after initial PCE discovery
- Value to producers beyond performance in concrete

**Dispersant (Dispersing Agent):** Material added to a solid in liquid suspension to separate flocculated particles, under shearing forces, into individually suspended particles and to reduce their natural tendency to re-associate.









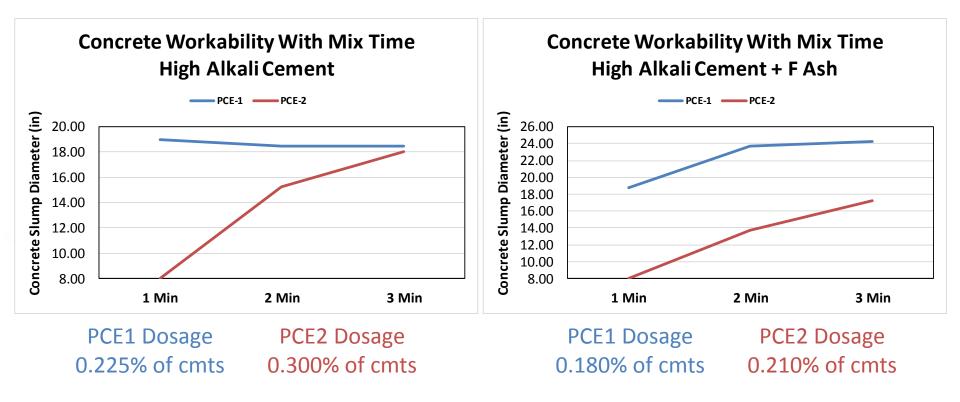

- Key structural features of a PCE dispersant
  - Main chain
  - Side chain
  - Charge centers
- Purposeful modifications to key structural features enable new areas of performance
  - Faster cement dispersion
  - Less sensitivity to changes in cement chemistry





## **Experiment- Materials**

- Concrete Materials
  - High Alkali Cement
    - ~23,000 ppm soluble SO<sub>4</sub>-2
  - Low Alkali Cement
    - ~3,800 ppm soluble SO<sub>4</sub>-2
  - Class F Fly Ash
  - Fine Aggregate (natural sand)
  - Coarse Aggregate (crushed limestone)
- Cement Dispersants
  - PCE1 (faster dispersion)
  - PCE2 (general purpose)


## **Experiment- Mix Design**

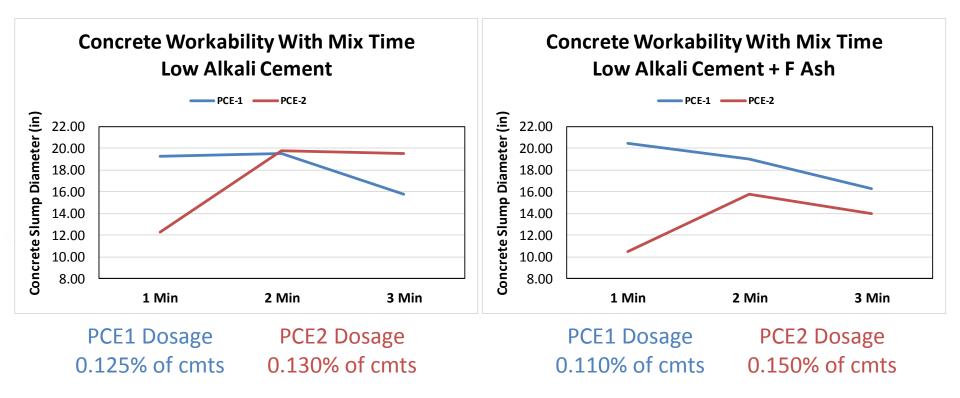
|                      | Design 1 | Design 2 |
|----------------------|----------|----------|
| Cement (lbs/yd3)     | 850      | 675      |
| F-Ash (lbs/yd3)      | 0        | 130      |
| Fine Agg (lbs/yd3)   | 1275     | 1275     |
| Coarse Agg (lbs/yd3) | 1740     | 1740     |
| Water (lbs/yd3)      | 275      | 275      |
| Air (%)              | 2        | 2        |





## **Results- High Alkali Cement**








- Fastest Workability generation
- Lower dosage requirement
- Less sensitive to changes in mix



## **Results- Low Alkali Cement**



Performance advantages observed across multiple cement chemistries



# Advancements in PCE's provide benefits beyond the concrete



#### **Improved Concrete Performance**

- Faster workability generation
- Promotes concrete consistency



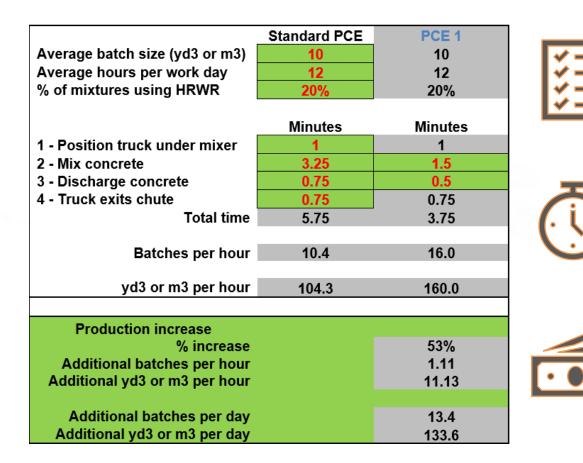
### **Improved Robustness**

- Reduced sensitivity to changes in cement
- Ability to produce more high performance concrete



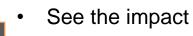
### **Operational Efficiencies**

- Enables faster batching processes
- Increased overall concrete production potential








## **Capturing the Value- Example**



Establish Baseline

- Capture ACTUAL field
  performance
- Assess your "as-is" situation



 Quantify the value to your operations

New Generation HRWR technology enables a 53% increase in production!



## **Capturing the Value- Case Study, Inventory Precast**

|                                | Evaluation 1 |         | Evalua       | Evaluation 2 |  |
|--------------------------------|--------------|---------|--------------|--------------|--|
|                                | Standard PCE | PCE 1   | Standard PCE | PCE 1        |  |
| Average batch size (yd3 or m3) | 4            | 4       | 4            | 4            |  |
| Average hours per work day     | 10           | 10      | 10           | 10           |  |
| % of mixtures using HRWR       | 75%          | 75%     | 75%          | 75%          |  |
|                                | Minutes      | Minutes | Minutes      | Minutes      |  |
| 1 - Position truck under mixer | 0            | 0       | 0            | 0            |  |
| 2 - Mix concrete               | 3            | 2       | 2.6          | 2.26         |  |
| 3 - Discharge concrete         | 0            | 0       | 0            | 0            |  |
| 4 - Truck exits chute          | 0            | 0       | 0            | 0            |  |
| Total time                     | 3            | 2       | 2.6          | 2.26         |  |
| Batches per hour               | 20.0         | 30.0    | 23.1         | 26.5         |  |
| yd3 or m3 per hour             | 80.0         | 120.0   | 92.3         | 106.2        |  |
| Production increase            |              |         |              |              |  |
| % increase                     |              | 50%     |              | 15%          |  |
| Additional batches per hour    |              | 7.50    |              | 2.60         |  |
| Additional yd3 or m3 per hour  |              | 30.00   |              | 10.42        |  |
| Additional batches per day     |              | 75.0    |              | 26.0         |  |
| Additional yd3 or m3 per day   |              | 300.0   |              | 104.2        |  |

- Baseline Established
- Mixing time savings in both evaluations
- No change to discharge time
- 15-50% increase in production
- 26-75 more batches/day

New Generation HRWR technology enables producer to increase production volume by 26 and 75 additional batches per day!







Advances in PCE's still yield impactful results



Faster Workability generation and decreased sensitivity to changes in cement



Value to producer beyond concrete properties & performance



**Operational efficiencies yield increased profit potential** 

## Thank you

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org





Always advancing